ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. Asia Pacific Conference on Robot IoT System Development and Platform (APRIS)
  4. 2024

Prediction System for Sugarcane's Destruction Rate from Sugarcane Stem Borer via Machine Learning

https://ipsj.ixsq.nii.ac.jp/records/241871
https://ipsj.ixsq.nii.ac.jp/records/241871
0a28eb8f-6ee8-46b0-a545-1eaca37eb61e
名前 / ファイル ライセンス アクション
IPSJ-APRIS2024011.pdf IPSJ-APRIS2024011.pdf (1.5 MB)
 2026年12月27日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, EMB:会員:¥0, DLIB:会員:¥0
Item type Symposium(1)
公開日 2024-12-27
タイトル
タイトル Prediction System for Sugarcane's Destruction Rate from Sugarcane Stem Borer via Machine Learning
タイトル
言語 en
タイトル Prediction System for Sugarcane's Destruction Rate from Sugarcane Stem Borer via Machine Learning
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Department of Computer Engineering, Faculty of Engineering, Khon Kaen University
著者所属
Department of Computer Engineering, Faculty of Engineering, Khon Kaen University
著者所属
Mitr Phol Sugarcane and Research Center
著者所属
Mitr Phol Sugarcane and Research Center
著者所属(英)
en
Department of Computer Engineering, Faculty of Engineering, Khon Kaen University
著者所属(英)
en
Department of Computer Engineering, Faculty of Engineering, Khon Kaen University
著者所属(英)
en
Mitr Phol Sugarcane and Research Center
著者所属(英)
en
Mitr Phol Sugarcane and Research Center
著者名 Wachirawit, Pituckwanich

× Wachirawit, Pituckwanich

Wachirawit, Pituckwanich

Search repository
Daranee, Hormdee

× Daranee, Hormdee

Daranee, Hormdee

Search repository
Manuwat, Tintarasara Na Ratchaseema

× Manuwat, Tintarasara Na Ratchaseema

Manuwat, Tintarasara Na Ratchaseema

Search repository
Vorraveerukorn, Veerachit

× Vorraveerukorn, Veerachit

Vorraveerukorn, Veerachit

Search repository
著者名(英) Wachirawit, Pituckwanich

× Wachirawit, Pituckwanich

en Wachirawit, Pituckwanich

Search repository
Daranee, Hormdee

× Daranee, Hormdee

en Daranee, Hormdee

Search repository
Manuwat, Tintarasara Na Ratchaseema

× Manuwat, Tintarasara Na Ratchaseema

en Manuwat, Tintarasara Na Ratchaseema

Search repository
Vorraveerukorn, Veerachit

× Vorraveerukorn, Veerachit

en Vorraveerukorn, Veerachit

Search repository
論文抄録
内容記述タイプ Other
内容記述 This study addresses the critical issue of sugarcane stem borer infestations, which significantly threaten sugarcane production worldwide. This paper presents a comprehensive approach to predicting sugarcane destruction rates caused by stem borers using advanced machine learning techniques. The methodology involves analyzing 10 years of monthly weather data alongside stem borer destruction rate data to develop predictive models. The performance of four state-of-the-art machine learning models: Random Forest, XGBoost, LightGBM, and Long Short-Term Memory (LSTM) networks, have been compared. The models were trained on 96 months of historical data and evaluated using 24 months of testing data. Performance was assessed using Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) metrics. Results demonstrate that gradient boosting machines, particularly XGBoost, offer superior predictive accuracy, with XGBoost achieving the lowest MAE and RMSE. The findings suggest that these models can effectively capture stem borer temporal patterns despite the data's complex characteristics. The implementation of such predictive systems has the potential to revolutionize pest management in sugarcane farming, enabling more targeted interventions, reducing economic losses, and promoting more sustainable agricultural
論文抄録(英)
内容記述タイプ Other
内容記述 This study addresses the critical issue of sugarcane stem borer infestations, which significantly threaten sugarcane production worldwide. This paper presents a comprehensive approach to predicting sugarcane destruction rates caused by stem borers using advanced machine learning techniques. The methodology involves analyzing 10 years of monthly weather data alongside stem borer destruction rate data to develop predictive models. The performance of four state-of-the-art machine learning models: Random Forest, XGBoost, LightGBM, and Long Short-Term Memory (LSTM) networks, have been compared. The models were trained on 96 months of historical data and evaluated using 24 months of testing data. Performance was assessed using Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) metrics. Results demonstrate that gradient boosting machines, particularly XGBoost, offer superior predictive accuracy, with XGBoost achieving the lowest MAE and RMSE. The findings suggest that these models can effectively capture stem borer temporal patterns despite the data's complex characteristics. The implementation of such predictive systems has the potential to revolutionize pest management in sugarcane farming, enabling more targeted interventions, reducing economic losses, and promoting more sustainable agricultural
書誌情報 Proceedings of Asia Pacific Conference on Robot IoT System Development and Platform

巻 2024, p. 53-54, 発行日 2024-12-27
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 07:30:52.943422
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3