ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. システム・アーキテクチャ(ARC)
  3. 2024
  4. 2024-ARC-259

Asynchronous Decentralized Distributed K-FAC : Enhancing Training Efficiency and Load Balancing in Heterogeneous Environments (unreferred)

https://ipsj.ixsq.nii.ac.jp/records/241670
https://ipsj.ixsq.nii.ac.jp/records/241670
e68b64ec-3295-4887-9c15-6a5a8be8effb
名前 / ファイル ライセンス アクション
IPSJ-ARC24259005.pdf IPSJ-ARC24259005.pdf (1.8 MB)
 2026年12月9日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, ARC:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-12-09
タイトル
タイトル Asynchronous Decentralized Distributed K-FAC : Enhancing Training Efficiency and Load Balancing in Heterogeneous Environments (unreferred)
タイトル
言語 en
タイトル Asynchronous Decentralized Distributed K-FAC : Enhancing Training Efficiency and Load Balancing in Heterogeneous Environments (unreferred)
言語
言語 eng
キーワード
主題Scheme Other
主題 並列計算
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Science and Technology, University of Tsukuba
著者所属
Center for Computational Sciences, University of Tsukuba
著者所属(英)
en
Graduate School of Science and Technology, University of Tsukuba
著者所属(英)
en
Center for Computational Sciences, University of Tsukuba
著者名 Mingzhe, Yu

× Mingzhe, Yu

Mingzhe, Yu

Search repository
Osamu, Tatebe

× Osamu, Tatebe

Osamu, Tatebe

Search repository
著者名(英) Mingzhe, Yu

× Mingzhe, Yu

en Mingzhe, Yu

Search repository
Osamu, Tatebe

× Osamu, Tatebe

en Osamu, Tatebe

Search repository
論文抄録
内容記述タイプ Other
内容記述 We propose AD-KFAC, an asynchronous decentralized framework extending the K-FAC optimizer for large-scale distributed deep learning in heterogeneous and unstable environments. Our method incorporates dynamic load balancing and fault tolerance mechanisms to enhance scalability and robustness. By combining an asynchronous K-FAC computation module, an RPC communication module, and dynamic task allocation based on the Raft consensus algorithm, our framework mitigates the impact of straggler nodes and network instability. Experimental results on a 16-node cluster using ResNet-18 on the CIFAR-10 dataset demonstrate that AD-KFAC outperforms the baseline integrated with PyTorch Distributed Data Parallel under varying computation and communication delays, as well as in the presence of node crashes or disconnections. Our method maintains stable convergence and achieves comparable or better final accuracy, showcasing its effectiveness.
論文抄録(英)
内容記述タイプ Other
内容記述 We propose AD-KFAC, an asynchronous decentralized framework extending the K-FAC optimizer for large-scale distributed deep learning in heterogeneous and unstable environments. Our method incorporates dynamic load balancing and fault tolerance mechanisms to enhance scalability and robustness. By combining an asynchronous K-FAC computation module, an RPC communication module, and dynamic task allocation based on the Raft consensus algorithm, our framework mitigates the impact of straggler nodes and network instability. Experimental results on a 16-node cluster using ResNet-18 on the CIFAR-10 dataset demonstrate that AD-KFAC outperforms the baseline integrated with PyTorch Distributed Data Parallel under varying computation and communication delays, as well as in the presence of node crashes or disconnections. Our method maintains stable convergence and achieves comparable or better final accuracy, showcasing its effectiveness.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10096105
書誌情報 研究報告システム・アーキテクチャ(ARC)

巻 2024-ARC-259, 号 5, p. 1-10, 発行日 2024-12-09
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8574
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 07:35:04.775392
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3