@techreport{oai:ipsj.ixsq.nii.ac.jp:00241640,
 author = {田中, 蒼大郎 and 越前谷, 博 and 荒木, 健治 and Sotaro, Tanaka and Hiroshi, Echizen'ya and Kenji, Araki},
 issue = {20},
 month = {Dec},
 note = {本稿では低資源言語を対象としたニューラル機械翻訳の精度向上のための新たな手法を提案する.提案手法では原文と訳文の文ベクトル間のコサイン類似度と人手スコアに基づきベクトル変換モデルを構築する.そして,構築したモデルに原文の文ベクトルを入力することで訳文の情報を有するベクトルを生成する.さらに生成されたベクトルをニューラル機械翻訳のエンコーダ側の単語埋め込みに用いることで翻訳精度の向上を図る.本研究ではアイヌ語-日本語間,ベトナム語-日本語間の翻訳実験を行った.性能評価実験の結果,アイヌ語-日本語間の翻訳においては BLEU スコアの平均がベクトル変換モデルを利用することにより向上した.また,ベトナム語-日本語間ではベトナム語から日本語方向の翻訳において BLEU スコアの向上を確認した.この結果より提案手法の有効性が確認された., In this paper, we propose a new method to improve the quality of neural machine translation for low-resource languages. The proposed method constructs a vector transformation model based on the human score and the cosine similarity between the source and target sentence vectors. The constructed model obtains the vector, which possesses the information of target sentence, using sentence vectors of source and target. Moreover, the model improves the translation quality using the obtained vector for word embedding of encoder in NMT. We performed the translation experiments for Ainu-Japanese and Vietnamese-Japanese. As the results of evaluation experiments, the average of BLEU scores improved using vector transformation model in Ainu-to-Japanese. In Vietnamese-Japanese, BLEU score in Vietnamese-to-Japanese improved by the proposed method. Therefore, we confirmed the effectiveness of the proposed method.},
 title = {ベクトル間類似度に基づくベクトル変換モデルを用いた低資源言語のためのニューラル機械翻訳},
 year = {2024}
}