ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 情報システムと社会環境(IS)
  3. 2024
  4. 2024-IS-170

Enhancing Depression Assessment with a Comprehensive Method for Heterogeneous Data

https://ipsj.ixsq.nii.ac.jp/records/241564
https://ipsj.ixsq.nii.ac.jp/records/241564
61d55f99-292a-4c21-84e2-8785e886f180
名前 / ファイル ライセンス アクション
IPSJ-IS24170003.pdf IPSJ-IS24170003.pdf (797.1 kB)
 2026年12月7日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, IS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-12-07
タイトル
タイトル Enhancing Depression Assessment with a Comprehensive Method for Heterogeneous Data
タイトル
言語 en
タイトル Enhancing Depression Assessment with a Comprehensive Method for Heterogeneous Data
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Donghua University
著者所属(英)
en
Donghua University
著者名 Ruijia, Yan

× Ruijia, Yan

Ruijia, Yan

Search repository
著者名(英) Ruijia, Yan

× Ruijia, Yan

en Ruijia, Yan

Search repository
論文抄録
内容記述タイプ Other
内容記述 In recent years, mental health issues like depression have become a global concern, making accurate evaluation of depression severity essential for effective treatment. Traditional scales rely on single numeric values, which may not capture the uncertainty caused by the subjective and fluctuating nature of mental health symptoms, leading to inconsistencies. This paper introduces a novel method enabling clinicians to record symptoms using heterogeneous data, including quantitative (crisp numbers, intervals) and qualitative data (linguistic terms). Additionally, a linguistic scale algorithm is employed to model the linguistic term sets, converting each symptom into a cloud model characterized by three numeric features. Aggregating these models allows for a comprehensive evaluation of both depression severity and the associated uncertainty levels. This approach enhances diagnostic accuracy and reliability in mental health care.
論文抄録(英)
内容記述タイプ Other
内容記述 In recent years, mental health issues like depression have become a global concern, making accurate evaluation of depression severity essential for effective treatment. Traditional scales rely on single numeric values, which may not capture the uncertainty caused by the subjective and fluctuating nature of mental health symptoms, leading to inconsistencies. This paper introduces a novel method enabling clinicians to record symptoms using heterogeneous data, including quantitative (crisp numbers, intervals) and qualitative data (linguistic terms). Additionally, a linguistic scale algorithm is employed to model the linguistic term sets, converting each symptom into a cloud model characterized by three numeric features. Aggregating these models allows for a comprehensive evaluation of both depression severity and the associated uncertainty levels. This approach enhances diagnostic accuracy and reliability in mental health care.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11253943
書誌情報 研究報告情報システムと社会環境(IS)

巻 2024-IS-170, 号 3, p. 1-5, 発行日 2024-12-07
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8809
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 07:37:13.677327
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3