{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00241026","sets":["1164:2592:11452:11789"]},"path":["11789"],"owner":"44499","recid":"241026","title":["常微分方程式の多点境界値問題の占部の定理のためのChebyshev有限級数近似解の区間演算的存在証明方法について"],"pubdate":{"attribute_name":"公開日","attribute_value":"2024-11-19"},"_buckets":{"deposit":"5baea29d-4cda-4f09-a7e6-621848219cad"},"_deposit":{"id":"241026","pid":{"type":"depid","value":"241026","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"常微分方程式の多点境界値問題の占部の定理のためのChebyshev有限級数近似解の区間演算的存在証明方法について","author_link":["662887","662886"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"常微分方程式の多点境界値問題の占部の定理のためのChebyshev有限級数近似解の区間演算的存在証明方法について"},{"subitem_title":"On an Interval Arithmetic Existence Proof Method of Chebyshev Finite Series Approximations for Urabe’s Theorems of Multipoint Boundary Value Problems for Ordinary Differential Equations","subitem_title_language":"en"}]},"item_type_id":"4","publish_date":"2024-11-19","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"湘南工科大学大学院電気情報工学専攻"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Graduate School of Electrical and Electronic Engineering, Shonan Institute of Technology","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/241026/files/IPSJ-AL24200010.pdf","label":"IPSJ-AL24200010.pdf"},"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-AL24200010.pdf","filesize":[{"value":"946.0 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"0","billingrole":"9"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_login","version_id":"c558689a-8ae2-4b0f-a3f8-f2eee95d0c37","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2024 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG."}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"岡崎, 秀晃"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Hideaki, Okazaki","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN1009593X","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2188-8566","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"本報告では,占部の定理に,区間演算を適用して,その解の存在する条件の精度保証を与える定理に拡張するのに,重要な近似解候補を Chebyshev 点での補間によって得られる有限多項式の近似解(積分により得られる係数のない有限 Chebyshev 級数近似)で与える方法について議論する.特に,Chebyshev 級数の無限級数によって得られる無限多項式の近似解,Chebyshev 級数の切り捨て有限級数によって得られる有限多項式の近似解と Chebyshev 点での補間によって得られる有限多項式の近似解について明らかにする.","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"This report discusses how to apply interval arithmetic to Urabe’s Theorems to extend it to a theorem that gives accuracy guarantees for the conditions under which its solution exists, by giving the important candidate approximate solutions as finite polynomials obtained by interpolation at Chebyshev points (a finite Chebyshev series approximation without any coefficients obtained by integrals). In particular, we clarify approximate solutions of infinite polynomials obtained by an infinite series of Chebyshev series, approximate solutions of finite polynomials obtained by a truncated finite series of Chebyshev series and approximate solutions of finite polynomials obtained by interpolation at Chebyshev points.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"6","bibliographic_titles":[{"bibliographic_title":"研究報告アルゴリズム(AL)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2024-11-19","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"10","bibliographicVolumeNumber":"2024-AL-200"}]},"relation_version_is_last":true,"weko_creator_id":"44499"},"id":241026,"updated":"2025-01-19T07:46:03.299042+00:00","links":{},"created":"2025-01-19T01:45:33.298861+00:00"}