ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. コンピュータセキュリティシンポジウム
  4. 2024

Parameter Matching Attack: Enhancing Practical Applicability of Availability Attacks

https://ipsj.ixsq.nii.ac.jp/records/240995
https://ipsj.ixsq.nii.ac.jp/records/240995
13cab78c-d27d-47f5-becc-8f60fbffc56c
名前 / ファイル ライセンス アクション
IPSJ-CSS2024249.pdf IPSJ-CSS2024249.pdf (428.4 kB)
 2026年10月15日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, CSEC:会員:¥0, SPT:会員:¥0, DLIB:会員:¥0
Item type Symposium(1)
公開日 2024-10-15
タイトル
言語 en
タイトル Parameter Matching Attack: Enhancing Practical Applicability of Availability Attacks
タイトル
言語 en
タイトル Parameter Matching Attack: Enhancing Practical Applicability of Availability Attacks
言語
言語 eng
キーワード
主題Scheme Other
主題 Availability attack, Data poisoning, Data security
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
RIKEN AIP
著者所属
Tokyo Institute of Technology; RIKEN AIP
著者所属(英)
en
RIKEN AIP
著者所属(英)
en
Tokyo Institute of Technology; RIKEN AIP
著者名 Yu, Zhe

× Yu, Zhe

Yu, Zhe

Search repository
Jun, Sakuma

× Jun, Sakuma

Jun, Sakuma

Search repository
著者名(英) Yu, Zhe

× Yu, Zhe

en Yu, Zhe

Search repository
Jun, Sakuma

× Jun, Sakuma

en Jun, Sakuma

Search repository
論文抄録
内容記述タイプ Other
内容記述 The widespread use of personal data for training machine learning models raises significant privacy concerns, as individuals have limited control over how their public data is subsequently utilized. Availability attacks have emerged as a means for data owners to safeguard their data by designing imperceptible perturbations that degrade model performance when incorporated into training datasets. However, existing availability attacks exhibit limitations in practical applicability, particularly when only a portion of the data can be perturbed. To address this challenge, we propose a novel availability attack approach termed Parameter Matching Attack (PMA). PMA is the first availability attack that works when only a portion of data can be perturbed. PMA optimizes perturbations so that when the model is trained on a mixture of clean and perturbed data, the resulting model will approach a model designed to perform poorly. Experimental results across four datasets demonstrate that PMA outperforms existing methods, achieving significant model performance degradation when a part of the training data is perturbed.
論文抄録(英)
内容記述タイプ Other
内容記述 The widespread use of personal data for training machine learning models raises significant privacy concerns, as individuals have limited control over how their public data is subsequently utilized. Availability attacks have emerged as a means for data owners to safeguard their data by designing imperceptible perturbations that degrade model performance when incorporated into training datasets. However, existing availability attacks exhibit limitations in practical applicability, particularly when only a portion of the data can be perturbed. To address this challenge, we propose a novel availability attack approach termed Parameter Matching Attack (PMA). PMA is the first availability attack that works when only a portion of data can be perturbed. PMA optimizes perturbations so that when the model is trained on a mixture of clean and perturbed data, the resulting model will approach a model designed to perform poorly. Experimental results across four datasets demonstrate that PMA outperforms existing methods, achieving significant model performance degradation when a part of the training data is perturbed.
書誌情報 コンピュータセキュリティシンポジウム2024論文集

p. 1869-1876, 発行日 2024-10-15
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 07:46:45.999045
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3