ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.65
  3. No.11

Container Auto-scaling System Using Sliding-Window Regression with Fuzzy Entropy

https://ipsj.ixsq.nii.ac.jp/records/240712
https://ipsj.ixsq.nii.ac.jp/records/240712
f7d3f396-c160-4c39-ab7e-b95d14244391
名前 / ファイル ライセンス アクション
IPSJ-JNL6511004.pdf IPSJ-JNL6511004.pdf (1.8 MB)
 2026年11月15日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, 論文誌:会員:¥0, DLIB:会員:¥0
Item type Journal(1)
公開日 2024-11-15
タイトル
タイトル Container Auto-scaling System Using Sliding-Window Regression with Fuzzy Entropy
タイトル
言語 en
タイトル Container Auto-scaling System Using Sliding-Window Regression with Fuzzy Entropy
言語
言語 eng
キーワード
主題Scheme Other
主題 [一般論文(推薦論文)] Cloud computing (IaaS, PaaS, SaaS), Regression, Outlier and anomaly detection, Load distribution and scheduling
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Japan Advanced Institute of Science and Technology
著者所属
Japan Advanced Institute of Science and Technology
著者所属(英)
en
Japan Advanced Institute of Science and Technology
著者所属(英)
en
Japan Advanced Institute of Science and Technology
著者名 Naoya, Yokoyama

× Naoya, Yokoyama

Naoya, Yokoyama

Search repository
Kiyofumi, Tanaka

× Kiyofumi, Tanaka

Kiyofumi, Tanaka

Search repository
著者名(英) Naoya, Yokoyama

× Naoya, Yokoyama

en Naoya, Yokoyama

Search repository
Kiyofumi, Tanaka

× Kiyofumi, Tanaka

en Kiyofumi, Tanaka

Search repository
論文抄録
内容記述タイプ Other
内容記述 When offering services such as e-commerce on the cloud, there is a necessity to adjust the amount of server resources provided in response to the irregularly increasing and decreasing traffic. This need arises when there is a desire to maintain a constant level of service while, at the same time, minimizing costs as much as possible. There is an abundance of prior research regarding the prediction of future loads from past time-series data. Many of these approaches rely on traditional time-series forecasting, which necessitates that the data used for learning adhere to stationary or unit root processes, or they use deep learning approaches that include using a vast amount of data and parameters. In this study, we propose a traffic forecasting method that includes dynamic window size changes that can follow even slight variation in trends. This method incorporates a fuzzy-entropy-based burst traffic detection in the regression estimation with sliding-window learning. In the evaluation, we conduct four comparative experiments using actual traffic rather than simulations. As a result, compared to the baseline, the proposed reduced the number of request failures and improved the Mean Squared Error between the ideal and the actual container count by 26.4 points on average.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.32(2024) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.32.916
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 When offering services such as e-commerce on the cloud, there is a necessity to adjust the amount of server resources provided in response to the irregularly increasing and decreasing traffic. This need arises when there is a desire to maintain a constant level of service while, at the same time, minimizing costs as much as possible. There is an abundance of prior research regarding the prediction of future loads from past time-series data. Many of these approaches rely on traditional time-series forecasting, which necessitates that the data used for learning adhere to stationary or unit root processes, or they use deep learning approaches that include using a vast amount of data and parameters. In this study, we propose a traffic forecasting method that includes dynamic window size changes that can follow even slight variation in trends. This method incorporates a fuzzy-entropy-based burst traffic detection in the regression estimation with sliding-window learning. In the evaluation, we conduct four comparative experiments using actual traffic rather than simulations. As a result, compared to the baseline, the proposed reduced the number of request failures and improved the Mean Squared Error between the ideal and the actual container count by 26.4 points on average.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.32(2024) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.32.916
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 65, 号 11, 発行日 2024-11-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
公開者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 07:53:36.303340
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3