ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. ヒューマンコンピュータインタラクション(HCI)
  3. 2024
  4. 2024-HCI-210

Revealing Secrets to AI: Analyzing Self-Disclosure in Interactions with AI and Humans

https://ipsj.ixsq.nii.ac.jp/records/240546
https://ipsj.ixsq.nii.ac.jp/records/240546
9efafcb1-eacf-4db6-a265-8a4889befb05
名前 / ファイル ライセンス アクション
IPSJ-HCI24210005.pdf IPSJ-HCI24210005.pdf (1.8 MB)
 2026年11月11日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, HCI:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-11-11
タイトル
タイトル Revealing Secrets to AI: Analyzing Self-Disclosure in Interactions with AI and Humans
タイトル
言語 en
タイトル Revealing Secrets to AI: Analyzing Self-Disclosure in Interactions with AI and Humans
言語
言語 eng
キーワード
主題Scheme Other
主題 AI
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Kyushu University, Graduate school of design
著者所属
Kyushu University, Faculty of design
著者所属(英)
en
Kyushu University, Graduate school of design
著者所属(英)
en
Kyushu University, Faculty of design
著者名 Liu, Yuqi

× Liu, Yuqi

Liu, Yuqi

Search repository
Satoru, Tokuhisa

× Satoru, Tokuhisa

Satoru, Tokuhisa

Search repository
著者名(英) Liu, Yuqi

× Liu, Yuqi

en Liu, Yuqi

Search repository
Satoru, Tokuhisa

× Satoru, Tokuhisa

en Satoru, Tokuhisa

Search repository
論文抄録
内容記述タイプ Other
内容記述 This study explores the factors that influence self-disclosure in interactions with AI compared to non-expert humans in public settings. While previous research has largely focused on comparing AI with experts, there is limited knowledge on how AI interactions differ from those with non-experts. To address this gap, an experiment was conducted with 24 participants, who were divided into two groups: one interacting with a non-expert human and the other with a ChatGPT-4o model. A qualitative analysis of self-disclosure behaviors identified nine key challenges and differences, shedding light on the potential role of AI in public mental health environments. The findings offered a deeper understanding of the challenges and opportunities associated with using AI for social support in public contexts, particularly in terms of the emotional comfort experienced during AI versus human interactions.
論文抄録(英)
内容記述タイプ Other
内容記述 This study explores the factors that influence self-disclosure in interactions with AI compared to non-expert humans in public settings. While previous research has largely focused on comparing AI with experts, there is limited knowledge on how AI interactions differ from those with non-experts. To address this gap, an experiment was conducted with 24 participants, who were divided into two groups: one interacting with a non-expert human and the other with a ChatGPT-4o model. A qualitative analysis of self-disclosure behaviors identified nine key challenges and differences, shedding light on the potential role of AI in public mental health environments. The findings offered a deeper understanding of the challenges and opportunities associated with using AI for social support in public contexts, particularly in terms of the emotional comfort experienced during AI versus human interactions.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA1221543X
書誌情報 研究報告ヒューマンコンピュータインタラクション(HCI)

巻 2024-HCI-210, 号 5, p. 1-8, 発行日 2024-11-11
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8760
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 07:56:44.446673
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3