{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00240516","sets":["1164:2036:11466:11785"]},"path":["11785"],"owner":"44499","recid":"240516","title":["スパースガウス過程回帰に基づく極低温トランジスタ電流モデリング"],"pubdate":{"attribute_name":"公開日","attribute_value":"2024-11-05"},"_buckets":{"deposit":"69163844-9d06-4413-a450-eb90ea9436fd"},"_deposit":{"id":"240516","pid":{"type":"depid","value":"240516","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"スパースガウス過程回帰に基づく極低温トランジスタ電流モデリング","author_link":["659955","659953","659956","659951","659954","659952"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"スパースガウス過程回帰に基づく極低温トランジスタ電流モデリング"},{"subitem_title":"Cryogenic Transistor Current Modeling Based on Sparse Gaussian Process Regression","subitem_title_language":"en"}]},"item_type_id":"4","publish_date":"2024-11-05","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"京都工芸繊維大学"},{"subitem_text_value":"京都大学大学院情報学研究科"},{"subitem_text_value":"京都工芸繊維大学"},{"subitem_text_value":"京都工芸繊維大学"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Kyoto Institute of Technology","subitem_text_language":"en"},{"subitem_text_value":"Kyoto University","subitem_text_language":"en"},{"subitem_text_value":"Kyoto Institute of Technology","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/240516/files/IPSJ-SLDM24207034.pdf","label":"IPSJ-SLDM24207034.pdf"},"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-SLDM24207034.pdf","filesize":[{"value":"2.2 MB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"0","billingrole":"10"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_login","version_id":"ccfa2788-42bc-49b2-8440-263bbc160990","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2024 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG."}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"岩崎, 哲朗"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"佐藤, 高史"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"新谷, 道広"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Tetsuro, Iwasaki","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Takashi, Sato","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Michihiro, Shintani","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA11451459","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2188-8639","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"本研究では,スパースガウス過程回帰(Sparse Gaussian process regression,SGPR)を用いて極低温環境下の CMOS トランジスタ特性をモデリングする手法を提案する.標準トランジスタモデルの温度範囲は  -55℃ から 125℃ であるが,低温で動作する応用が急速に拡大している.提案手法では,ガウス過程回帰の近似計算手法である SGPR を用いて,室温から極低温まで動作する CMOS 回路をシミュレーションするためのトランジスタ電流モデルを構築する.また,提案手法は低電流領域と高電流領域の学習を個別に行い,それらをスムージング関数で滑らかに接続することで,遮断領域から飽和領域までの広範なバイアス条件もシミュレーション可能である.65 nm および 22 nm プロセスで製造した nMOS,pMOS トランジスタを用いた評価においては,3 K から 300 K までの電流特性を学習して生成したモデルを市販 SPICE シミュレータに組み込み,正確にシミュレーションできることを示す.","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"In this study, we propose a method for modeling CMOS transistor characteristics under cryogenic conditions using Sparse Gaussian process regression (SGPR). The temperature range of the standard transistor model is from -55℃ to 125℃, but applications operating at low temperatures are rapidly expanding. The proposed method constructs a transistor current model to simulate CMOS circuits operating from room temperature to cryogenic temperatures using SGPR, which is an approximate Gaussian process regression method. The proposed method can simulate a wide range of bias conditions from the cutoff region to the saturation region by learning low-current and high-current regions separately and connecting them smoothly with a smoothing function. In the evaluation using nMOS and pMOS transistors fabricated on 65 nm and 22 nm processes, the model generated by learning the current characteristics from 3 K to 300 K is incorporated into a commercial SPICE simulator, showing that the simulation can be performed accurately.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"6","bibliographic_titles":[{"bibliographic_title":"研究報告システムとLSIの設計技術(SLDM)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2024-11-05","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"34","bibliographicVolumeNumber":"2024-SLDM-207"}]},"relation_version_is_last":true,"weko_creator_id":"44499"},"id":240516,"updated":"2025-01-19T07:57:18.785498+00:00","links":{},"created":"2025-01-19T01:44:45.009865+00:00"}