ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. コンシューマ・デバイス&システム(CDS)
  3. Vol.14
  4. No.3

Privacy-protective Distributed Machine Learning between Rich Devices and Edge Servers

https://ipsj.ixsq.nii.ac.jp/records/240477
https://ipsj.ixsq.nii.ac.jp/records/240477
c1c20ea7-4afb-44b5-ae59-374952025564
名前 / ファイル ライセンス アクション
IPSJ-TCDS1403003.pdf IPSJ-TCDS1403003.pdf (1.3 MB)
 2026年10月31日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, CDS:会員:¥0, DLIB:会員:¥0
Item type Trans(1)
公開日 2024-10-31
タイトル
タイトル Privacy-protective Distributed Machine Learning between Rich Devices and Edge Servers
タイトル
言語 en
タイトル Privacy-protective Distributed Machine Learning between Rich Devices and Edge Servers
言語
言語 eng
キーワード
主題Scheme Other
主題 [コンシューマ・サービス論文] edge computing, distributed machine learning, federated learning, internet of things
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Ochanomizu University
著者所属
University of Tokyo
著者所属
Kogakuin University
著者所属
Ochanomizu University
著者所属(英)
en
Ochanomizu University
著者所属(英)
en
University of Tokyo
著者所属(英)
en
Kogakuin University
著者所属(英)
en
Ochanomizu University
著者名 Saki, Takano

× Saki, Takano

Saki, Takano

Search repository
Akihiro, Nakao

× Akihiro, Nakao

Akihiro, Nakao

Search repository
Saneyasu, Yamaguch

× Saneyasu, Yamaguch

Saneyasu, Yamaguch

Search repository
Masato, Oguchi

× Masato, Oguchi

Masato, Oguchi

Search repository
著者名(英) Saki, Takano

× Saki, Takano

en Saki, Takano

Search repository
Akihiro, Nakao

× Akihiro, Nakao

en Akihiro, Nakao

Search repository
Saneyasu, Yamaguch

× Saneyasu, Yamaguch

en Saneyasu, Yamaguch

Search repository
Masato, Oguchi

× Masato, Oguchi

en Masato, Oguchi

Search repository
論文抄録
内容記述タイプ Other
内容記述 The utilization of data collected by edge devices, including personal information, in machine learning has emerged as a significant trend in recent years. In most distributed machine learning methods, like Federated Learning, data or training results are typically aggregated and managed on high-performance servers. However, transferring users' personal information to an external server can raise privacy concerns due to the potential risk of data leakage. To tackle this issue, we propose a distributed machine learning model that offers robust privacy protection, allowing users to decide whether or not to share personal data with the server. In the proposed model, the edge device takes over the training at the edge server and sends only the results for which the user has given permission to the edge server for integration. To validate the effectiveness of the proposed model, we performed experiments on facial image recognition using Jetson Nano as an edge device. The experimental results confirmed that edge devices were capable of utilizing personal information in a short time, while the edge server achieved enhanced accuracy by integrating multiple training results. Thus, the results show that the proposed model enables the safe and efficient utilization of data collected by edge devices.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.32(2024) (online)
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 The utilization of data collected by edge devices, including personal information, in machine learning has emerged as a significant trend in recent years. In most distributed machine learning methods, like Federated Learning, data or training results are typically aggregated and managed on high-performance servers. However, transferring users' personal information to an external server can raise privacy concerns due to the potential risk of data leakage. To tackle this issue, we propose a distributed machine learning model that offers robust privacy protection, allowing users to decide whether or not to share personal data with the server. In the proposed model, the edge device takes over the training at the edge server and sends only the results for which the user has given permission to the edge server for integration. To validate the effectiveness of the proposed model, we performed experiments on facial image recognition using Jetson Nano as an edge device. The experimental results confirmed that edge devices were capable of utilizing personal information in a short time, while the edge server achieved enhanced accuracy by integrating multiple training results. Thus, the results show that the proposed model enables the safe and efficient utilization of data collected by edge devices.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.32(2024) (online)
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12628043
書誌情報 情報処理学会論文誌コンシューマ・デバイス&システム(CDS)

巻 14, 号 3, 発行日 2024-10-31
ISSN
収録物識別子タイプ ISSN
収録物識別子 2186-5728
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 07:57:57.863618
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3