ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 量子ソフトウェア(QS)
  3. 2024
  4. 2024-QS-013

Dividing quantum circuits for time evolution of stochastic processes by orthogonal series density estimation

https://ipsj.ixsq.nii.ac.jp/records/240375
https://ipsj.ixsq.nii.ac.jp/records/240375
1707f83d-4d25-4326-96e0-e47a1abf6177
名前 / ファイル ライセンス アクション
IPSJ-QS24013010.pdf IPSJ-QS24013010.pdf (2.0 MB)
 2026年10月21日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, QS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-10-21
タイトル
タイトル Dividing quantum circuits for time evolution of stochastic processes by orthogonal series density estimation
タイトル
言語 en
タイトル Dividing quantum circuits for time evolution of stochastic processes by orthogonal series density estimation
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Center for Quantum Information and Quantum Biology, Osaka University
著者所属(英)
en
Center for Quantum Information and Quantum Biology, Osaka University
著者名 Koichi, Miyamoto

× Koichi, Miyamoto

Koichi, Miyamoto

Search repository
著者名(英) Koichi, Miyamoto

× Koichi, Miyamoto

en Koichi, Miyamoto

Search repository
論文抄録
内容記述タイプ Other
内容記述 Quantum Monte Carlo integration (QMCI) is a quantum algorithm to estimate expectations of random variables, with industrial applications such as financial derivative pricing. When it is applied to expectations concerning a stochastic process X(t), e.g., an underlying asset price in derivative pricing, the quantum circuit UX(t) to generate the quantum state encoding the probability density of X(t) can have a large depth. With time discretized into N points, using state preparation oracles for the transition probabilities of X(t), the state preparation for X(t) results in a depth of O(N), which may be problematic for large N. Moreover, if we estimate expectations concerning X(t) at N time points, the total query complexity scales on N as O(N2), which is worse than the O(N) complexity in the classical Monte Carlo method. In this paper, to improve this, we propose a method to divide UX(t) based on orthogonal series density estimation. This approach involves approximating the densities of X(t) at N time points with orthogonal series, where the coefficients are estimated as expectations of the orthogonal functions by QMCI. By using these approximated densities, we can estimate expectations concerning X(t) by QMCI without requiring deep circuits. To obtain the densities at N time points, our method achieves the circuit depth and total query complexity scaling as O(√N) and O(N3/2), respectively. (This is the short version of the full paper [1].)
論文抄録(英)
内容記述タイプ Other
内容記述 Quantum Monte Carlo integration (QMCI) is a quantum algorithm to estimate expectations of random variables, with industrial applications such as financial derivative pricing. When it is applied to expectations concerning a stochastic process X(t), e.g., an underlying asset price in derivative pricing, the quantum circuit UX(t) to generate the quantum state encoding the probability density of X(t) can have a large depth. With time discretized into N points, using state preparation oracles for the transition probabilities of X(t), the state preparation for X(t) results in a depth of O(N), which may be problematic for large N. Moreover, if we estimate expectations concerning X(t) at N time points, the total query complexity scales on N as O(N2), which is worse than the O(N) complexity in the classical Monte Carlo method. In this paper, to improve this, we propose a method to divide UX(t) based on orthogonal series density estimation. This approach involves approximating the densities of X(t) at N time points with orthogonal series, where the coefficients are estimated as expectations of the orthogonal functions by QMCI. By using these approximated densities, we can estimate expectations concerning X(t) by QMCI without requiring deep circuits. To obtain the densities at N time points, our method achieves the circuit depth and total query complexity scaling as O(√N) and O(N3/2), respectively. (This is the short version of the full paper [1].)
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12894105
書誌情報 研究報告量子ソフトウェア(QS)

巻 2024-QS-13, 号 10, p. 1-10, 発行日 2024-10-21
ISSN
収録物識別子タイプ ISSN
収録物識別子 2435-6492
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 07:59:59.437111
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3