ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. マルチメディア、分散、協調とモバイルシンポジウム(DICOMO)
  4. 2024

秘匿クロス統計技術を用いたデータ入出力のプライバシを保護した垂直連合学習

https://ipsj.ixsq.nii.ac.jp/records/240203
https://ipsj.ixsq.nii.ac.jp/records/240203
d46f07c1-2e26-4ed1-b51e-cdfa59f9de9c
名前 / ファイル ライセンス アクション
IPSJ-DICOMO2024087.pdf IPSJ-DICOMO2024087.pdf (958.4 kB)
 2026年6月19日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, DLIB:会員:¥0
Item type Symposium(1)
公開日 2024-06-19
タイトル
タイトル 秘匿クロス統計技術を用いたデータ入出力のプライバシを保護した垂直連合学習
言語
言語 jpn
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
NTTドコモ
著者所属
NTTドコモ/京都橘大学 工学部
著者名 落合, 桂一

× 落合, 桂一

落合, 桂一

Search repository
寺田, 雅之

× 寺田, 雅之

寺田, 雅之

Search repository
論文抄録
内容記述タイプ Other
内容記述 データ活用が様々な分野で進んでおり,単一組織が保有するデータから知見を得るだけでなく,組織を横断してデータを連携することにより,より多面的な知見が得られると期待される.一方,組織間でデータ連携を行うには,プライバシ保護が課題となる.組織を横断してデータが分散した状態で機械学習モデルを構築する連合学習では,各組織が保有するデータは共有せず,モデルのパラメータやモデル更新に必要な情報のみを共有することでプライバシを保護する.一方,モデル更新に必要な勾配情報のみからでも学習に利用したデータが漏洩することが指摘されており,各組織のモデル学習において共有する勾配情報にノイズを加える局所差分プライバシを適用することで安全な学習を行っている.しかしながら,局所差分プライバシではノイズ量が多くなりモデルの精度が低下するという課題がある.そこで本論文では,組織を横断して安全にデータ連携する秘匿クロス統計技術を用いて差分プライバシが適用されたクロス集計表を作成し,そのクロス集計表からナイーブベイズ分類器を学習することで,従来の連合学習と比べノイズの影響を低減してモデルの学習を行う手法を提案する.提案手法の有効性を確認するため,連合学習で用いられる深層学習に対する安全な学習手法のDP-SGDと提案手法で分類問題で精度評価を行ったところ,プライバシ予算が限定された状況では,提案手法の方が分類精度が高いことを確認した.
書誌情報 マルチメディア,分散,協調とモバイルシンポジウム2024論文集

巻 2024, p. 636-641, 発行日 2024-06-19
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 08:03:02.905312
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3