ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. マルチメディア通信と分散処理ワークショップ
  4. 2024

A Case-based Reward Function Design for Reinforcement Learning-based Pure Pursuit Hybrid Controller

https://ipsj.ixsq.nii.ac.jp/records/240076
https://ipsj.ixsq.nii.ac.jp/records/240076
886b5f43-48ed-4351-88a2-7aa2f6026b9e
名前 / ファイル ライセンス アクション
IPSJ-DPSWS20240010.pdf IPSJ-DPSWS20240010.pdf (4.2 MB)
 2026年10月23日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, DPS:会員:¥0, DLIB:会員:¥0
Item type Symposium(1)
公開日 2024-10-23
タイトル
タイトル A Case-based Reward Function Design for Reinforcement Learning-based Pure Pursuit Hybrid Controller
タイトル
言語 en
タイトル A Case-based Reward Function Design for Reinforcement Learning-based Pure Pursuit Hybrid Controller
言語
言語 eng
キーワード
主題Scheme Other
主題 Reinforcement learning, Autonomous driving, Reward function, Adaptive pure pursuit, Path tracking
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Kyushu University
著者所属
Kyushu University
著者所属
Kyushu University
著者所属(英)
en
Kyushu University
著者所属(英)
en
Kyushu University
著者所属(英)
en
Kyushu University
著者名 Pang, Lixin

× Pang, Lixin

Pang, Lixin

Search repository
Huang, Jianyu

× Huang, Jianyu

Huang, Jianyu

Search repository
Arakawa, Yutaka

× Arakawa, Yutaka

Arakawa, Yutaka

Search repository
著者名(英) Pang, Lixin

× Pang, Lixin

en Pang, Lixin

Search repository
Huang, Jianyu

× Huang, Jianyu

en Huang, Jianyu

Search repository
Arakawa, Yutaka

× Arakawa, Yutaka

en Arakawa, Yutaka

Search repository
論文抄録
内容記述タイプ Other
内容記述 This paper presents an innovative approach to enhancing the Pure Pursuit algorithm for path tracking in autonomous vehicles by integrating Reinforcement Learning and curvature information. Traditional Pure Pursuit algorithms, while effective in low-speed scenarios, often require extensive manual tuning of the look-ahead distance to maintain tracking accuracy at varying speeds and complex paths. To address these limitations, we designed an RL-based pure pursuit controller incorporating future curvature into the state space and reward function to enhance learning a proper tracking policy at higher speeds. The controller is trained and evaluated in the CARLA simulator, demonstrating improved performance in terms of path-tracking accuracy and stability across different speeds and path complexities. By comparing the controller which considered curvature improvement with the original one, our results show that the improved method can achieve lower lateral deviation and lateral acceleration while maintaining almost the same average speed.
論文抄録(英)
内容記述タイプ Other
内容記述 This paper presents an innovative approach to enhancing the Pure Pursuit algorithm for path tracking in autonomous vehicles by integrating Reinforcement Learning and curvature information. Traditional Pure Pursuit algorithms, while effective in low-speed scenarios, often require extensive manual tuning of the look-ahead distance to maintain tracking accuracy at varying speeds and complex paths. To address these limitations, we designed an RL-based pure pursuit controller incorporating future curvature into the state space and reward function to enhance learning a proper tracking policy at higher speeds. The controller is trained and evaluated in the CARLA simulator, demonstrating improved performance in terms of path-tracking accuracy and stability across different speeds and path complexities. By comparing the controller which considered curvature improvement with the original one, our results show that the improved method can achieve lower lateral deviation and lateral acceleration while maintaining almost the same average speed.
書誌情報 第32回マルチメディア通信と分散処理ワークショップ論文集

p. 71-77, 発行日 2024-10-23
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 08:05:41.125599
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3