{"created":"2025-01-19T01:42:58.074999+00:00","updated":"2025-01-19T08:18:27.404068+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00239363","sets":["581:11492:11502"]},"path":["11502"],"owner":"44499","recid":"239363","title":["Malicious JavaScript Detection in Realistic Environments with SVM and MLP Models"],"pubdate":{"attribute_name":"公開日","attribute_value":"2024-09-15"},"_buckets":{"deposit":"192e42ea-dbb7-42f2-940a-905909585843"},"_deposit":{"id":"239363","pid":{"type":"depid","value":"239363","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"Malicious JavaScript Detection in Realistic Environments with SVM and MLP Models","author_link":["656017","656020","656018","656019"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Malicious JavaScript Detection in Realistic Environments with SVM and MLP Models"},{"subitem_title":"Malicious JavaScript Detection in Realistic Environments with SVM and MLP Models","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"[特集:サプライチェーンを安全にするサイバーセキュリティ技術] malicious JavaScript, feature re-sampling, imbalance dataset","subitem_subject_scheme":"Other"}]},"item_type_id":"2","publish_date":"2024-09-15","item_2_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"National Defense Academy"},{"subitem_text_value":"National Defense Academy"}]},"item_2_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"National Defense Academy","subitem_text_language":"en"},{"subitem_text_value":"National Defense Academy","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/239363/files/IPSJ-JNL6509009.pdf","label":"IPSJ-JNL6509009.pdf"},"date":[{"dateType":"Available","dateValue":"2026-09-15"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-JNL6509009.pdf","filesize":[{"value":"1.1 MB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"0","billingrole":"5"},{"tax":["include_tax"],"price":"0","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"8"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"806f471f-6104-4f63-9e2b-38f286eb4b9a","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2024 by the Information Processing Society of Japan"}]},"item_2_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Ngoc, Minh Phung"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Mamoru, Mimura"}],"nameIdentifiers":[{}]}]},"item_2_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Ngoc, Minh Phung","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Mamoru, Mimura","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_2_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN00116647","subitem_source_identifier_type":"NCID"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_6501","resourcetype":"journal article"}]},"item_2_publisher_15":{"attribute_name":"公開者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"item_2_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1882-7764","subitem_source_identifier_type":"ISSN"}]},"item_2_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"Malicious JavaScript detection using machine learning models has shown many great results over the years. However, real-world data only has a small fraction of malicious JavaScript. Many previous techniques ignore most of the benign samples and focus on training a machine learning model with a balanced dataset. This paper continues the previous work (Phung and Mimura, 2023), uses Support vector machine (SVM) and Multi-layer perceptron (MLP) as classifiers, trains the models with a Doc2Vec-based filter that can quickly classify JavaScript malware using Natural Language Processing (NLP) and feature re-sampling. In this paper, the total features of the benign samples will be reduced using a combination of word vectors and a clustering model. Random seed oversampling will generate new training malicious data based on the original training dataset. We evaluate our models with a dataset of over 30,000 samples obtained from top popular websites, PhishTank, and GitHub. The experimental result shows that Abstract syntax tree (AST) parsing has the most effect on the improvement of the detection scores.\n------------------------------\nThis is a preprint of an article intended for publication Journal of\nInformation Processing(JIP). This preprint should not be cited. This\narticle should be cited as: Journal of Information Processing Vol.32(2024) (online)\nDOI http://dx.doi.org/10.2197/ipsjjip.32.748\n------------------------------","subitem_description_type":"Other"}]},"item_2_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"Malicious JavaScript detection using machine learning models has shown many great results over the years. However, real-world data only has a small fraction of malicious JavaScript. Many previous techniques ignore most of the benign samples and focus on training a machine learning model with a balanced dataset. This paper continues the previous work (Phung and Mimura, 2023), uses Support vector machine (SVM) and Multi-layer perceptron (MLP) as classifiers, trains the models with a Doc2Vec-based filter that can quickly classify JavaScript malware using Natural Language Processing (NLP) and feature re-sampling. In this paper, the total features of the benign samples will be reduced using a combination of word vectors and a clustering model. Random seed oversampling will generate new training malicious data based on the original training dataset. We evaluate our models with a dataset of over 30,000 samples obtained from top popular websites, PhishTank, and GitHub. The experimental result shows that Abstract syntax tree (AST) parsing has the most effect on the improvement of the detection scores.\n------------------------------\nThis is a preprint of an article intended for publication Journal of\nInformation Processing(JIP). This preprint should not be cited. This\narticle should be cited as: Journal of Information Processing Vol.32(2024) (online)\nDOI http://dx.doi.org/10.2197/ipsjjip.32.748\n------------------------------","subitem_description_type":"Other"}]},"item_2_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographic_titles":[{"bibliographic_title":"情報処理学会論文誌"}],"bibliographicIssueDates":{"bibliographicIssueDate":"2024-09-15","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"9","bibliographicVolumeNumber":"65"}]},"relation_version_is_last":true,"weko_creator_id":"44499"},"id":239363,"links":{}}