{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00238532","sets":["1164:2592:11452:11708"]},"path":["11708"],"owner":"44499","recid":"238532","title":["辺カット型グラフパラメータに基づく最大出次数最小化問題と標的集合選択問題の計算複雑性"],"pubdate":{"attribute_name":"公開日","attribute_value":"2024-08-29"},"_buckets":{"deposit":"c554d773-3371-416c-b66d-e64036b03772"},"_deposit":{"id":"238532","pid":{"type":"depid","value":"238532","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"辺カット型グラフパラメータに基づく最大出次数最小化問題と標的集合選択問題の計算複雑性","author_link":["653200","653199","653198"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"辺カット型グラフパラメータに基づく最大出次数最小化問題と標的集合選択問題の計算複雑性"}]},"item_type_id":"4","publish_date":"2024-08-29","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"北海道大学"},{"subitem_text_value":"北海道大学"},{"subitem_text_value":"北海道大学"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/238532/files/IPSJ-AL24199005.pdf","label":"IPSJ-AL24199005.pdf"},"date":[{"dateType":"Available","dateValue":"2026-08-29"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-AL24199005.pdf","filesize":[{"value":"1.1 MB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"9"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"4cb994c6-dc50-4e5c-9a8b-653640d91b73","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2024 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"藤原, 優"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"儀間, 達也"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"小林, 靖明"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN1009593X","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2188-8566","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"グラフの最大出次数最小化問題と標的集合選択問題に関して,グラフの構造的パラメータの視点での固定パラメータ容易性について議論する.これらの問題は,グラフの構造的パラメータを用いたパラメータ化計算量の研究がよく行われているが,非常に限定された範囲でも困難であることがわかっている.本稿では,Ganian と Korchemna (Algorithmica 2024) によって導入されたスリム木カット幅と呼ばれる辺カットに基づくグラフの構造的パラメータを用いて,前述の 2 つの問題のパラメータ化計算量を議論する.具体的には,どちらの問題もスリム木カット幅をパラメータとして固定パラメータ容易であることを示す.さらに,最大出次数最小化問題に関しては,スリム木カット幅を一般化した木カット幅が定数であっても NP 困難であることを示す.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"7","bibliographic_titles":[{"bibliographic_title":"研究報告アルゴリズム(AL)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2024-08-29","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"5","bibliographicVolumeNumber":"2024-AL-199"}]},"relation_version_is_last":true,"weko_creator_id":"44499"},"id":238532,"updated":"2025-01-19T08:32:16.038099+00:00","links":{},"created":"2025-01-19T01:41:49.161362+00:00"}