ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. DAシンポジウム
  4. 2024

Squeezing 8-bit Multiplier Energy with Input Segmentation in DNN Inference Accelerators

https://ipsj.ixsq.nii.ac.jp/records/238233
https://ipsj.ixsq.nii.ac.jp/records/238233
23150108-0433-4365-9625-92f2df9062c1
名前 / ファイル ライセンス アクション
IPSJ-DAS2024009.pdf IPSJ-DAS2024009.pdf (1.3 MB)
 2026年8月21日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, SLDM:会員:¥0, DLIB:会員:¥0
Item type Symposium(1)
公開日 2024-08-21
タイトル
タイトル Squeezing 8-bit Multiplier Energy with Input Segmentation in DNN Inference Accelerators
タイトル
言語 en
タイトル Squeezing 8-bit Multiplier Energy with Input Segmentation in DNN Inference Accelerators
言語
言語 eng
キーワード
主題Scheme Other
主題 近似計算
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Kyoto University
著者所属
Kyoto University
著者所属
Kyoto University
著者所属
SUSTech
著者所属
Kyoto University
著者所属(英)
en
Kyoto University
著者所属(英)
en
Kyoto University
著者所属(英)
en
Kyoto University
著者所属(英)
en
SUSTech
著者所属(英)
en
Kyoto University
著者名 Mingtao, Zhang

× Mingtao, Zhang

Mingtao, Zhang

Search repository
Quan, Cheng

× Quan, Cheng

Quan, Cheng

Search repository
Hiromitsu, Awano

× Hiromitsu, Awano

Hiromitsu, Awano

Search repository
Longyang, Lin

× Longyang, Lin

Longyang, Lin

Search repository
Masanori, Hashimoto

× Masanori, Hashimoto

Masanori, Hashimoto

Search repository
著者名(英) Mingtao, Zhang

× Mingtao, Zhang

en Mingtao, Zhang

Search repository
Quan, Cheng

× Quan, Cheng

en Quan, Cheng

Search repository
Hiromitsu, Awano

× Hiromitsu, Awano

en Hiromitsu, Awano

Search repository
Longyang, Lin

× Longyang, Lin

en Longyang, Lin

Search repository
Masanori, Hashimoto

× Masanori, Hashimoto

en Masanori, Hashimoto

Search repository
論文抄録
内容記述タイプ Other
内容記述 Approximate computing is a strategic method to reduce design complexity and energy consumption, especially in error-resilient applications. Multipliers, essential arithmetic units, are crucial in areas like deep neural networks (DNNs). However, current extensively researched 8-bit approximate multipliers often fail to maintain high accuracy across various DNN applications. This paper addresses the key limitations of multipliers with simplified structures or approximated logic and highlights the advantages of an alternative design approach using approximation at the input level. Additionally, we explore an input static segmentation strategy and propose simplified versions of approximate multipliers, aiming to offer more energy-efficient options for DNN accelerators. Experimental results show that existing 8-bit approximate multipliers cannot match the performance of commercial IP multipliers. In contrast, the proposed static segmented multipliers bridge the performance gap between IP multipliers of different quantization bit-widths, providing an improved energy-accuracy trade-off for DNN inference accelerators.
論文抄録(英)
内容記述タイプ Other
内容記述 Approximate computing is a strategic method to reduce design complexity and energy consumption, especially in error-resilient applications. Multipliers, essential arithmetic units, are crucial in areas like deep neural networks (DNNs). However, current extensively researched 8-bit approximate multipliers often fail to maintain high accuracy across various DNN applications. This paper addresses the key limitations of multipliers with simplified structures or approximated logic and highlights the advantages of an alternative design approach using approximation at the input level. Additionally, we explore an input static segmentation strategy and propose simplified versions of approximate multipliers, aiming to offer more energy-efficient options for DNN accelerators. Experimental results show that existing 8-bit approximate multipliers cannot match the performance of commercial IP multipliers. In contrast, the proposed static segmented multipliers bridge the performance gap between IP multipliers of different quantization bit-widths, providing an improved energy-accuracy trade-off for DNN inference accelerators.
書誌情報 DAシンポジウム2024論文集

巻 2024, p. 49-56, 発行日 2024-08-21
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 08:37:47.572180
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3