ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. セキュリティ心理学とトラスト(SPT)
  3. 2024
  4. 2024-SPT-056

The OU-ISIR Multimodal Biometric Database and Its Performance Evaluation

https://ipsj.ixsq.nii.ac.jp/records/237130
https://ipsj.ixsq.nii.ac.jp/records/237130
fc1e22a3-7f57-45bf-bdf3-1b329979c2ea
名前 / ファイル ライセンス アクション
IPSJ-SPT24056009.pdf IPSJ-SPT24056009.pdf (1.8 MB)
 2026年7月15日からダウンロード可能です。
Copyright (c) 2024 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
SPT:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-07-15
タイトル
タイトル The OU-ISIR Multimodal Biometric Database and Its Performance Evaluation
タイトル
言語 en
タイトル The OU-ISIR Multimodal Biometric Database and Its Performance Evaluation
言語
言語 eng
キーワード
主題Scheme Other
主題 BioX ムーショットセッション
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
SANKEN, Osaka University
著者所属
SANKEN, Osaka University
著者所属(英)
en
SANKEN, Osaka University
著者所属(英)
en
SANKEN, Osaka University
著者名 Chi, Xu

× Chi, Xu

Chi, Xu

Search repository
Xiang, Li

× Xiang, Li

Xiang, Li

Search repository
Allam, Shehata

× Allam, Shehata

Allam, Shehata

Search repository
Yasushi, Yagi

× Yasushi, Yagi

Yasushi, Yagi

Search repository
著者名(英) Chi, Xu

× Chi, Xu

en Chi, Xu

Search repository
Xiang, Li

× Xiang, Li

en Xiang, Li

Search repository
Allam, Shehata

× Allam, Shehata

en Allam, Shehata

Search repository
Yasushi, Yagi

× Yasushi, Yagi

en Yasushi, Yagi

Search repository
論文抄録
内容記述タイプ Other
内容記述 In this paper, we describe a new multimodal biometric database named “OU-ISIR Multimodal Biometric Database”. An early version of this database consists of more than 100 subjects, which will increase to around 400 subjects in the future. Eleven biometric modalities are provided in this database, which, to the best of our knowledge, is the largest number of modalities among existing multimodal databases. Specifically, for each subject, we collected his/her iris, palm veins, 2D face images, signature images, gait videos, and speech data, which are typically included in existing multimodal databases. Additionally, some modalities not commonly considered in previous datasets are also included, that is, full-body images, online signature time series data, brain signals, inertial data (e.g., acceleration), and health data (e.g., heartbeat). We provide baseline results by evaluating benchmark algorithms on some individual modalities, and discuss possible future works using this database. We believe this database can facilitate future research on person authentication using unimodal, multimodal, and even cross-modal approaches, as well as research on brain signal and health status analysis.
論文抄録(英)
内容記述タイプ Other
内容記述 In this paper, we describe a new multimodal biometric database named “OU-ISIR Multimodal Biometric Database”. An early version of this database consists of more than 100 subjects, which will increase to around 400 subjects in the future. Eleven biometric modalities are provided in this database, which, to the best of our knowledge, is the largest number of modalities among existing multimodal databases. Specifically, for each subject, we collected his/her iris, palm veins, 2D face images, signature images, gait videos, and speech data, which are typically included in existing multimodal databases. Additionally, some modalities not commonly considered in previous datasets are also included, that is, full-body images, online signature time series data, brain signals, inertial data (e.g., acceleration), and health data (e.g., heartbeat). We provide baseline results by evaluating benchmark algorithms on some individual modalities, and discuss possible future works using this database. We believe this database can facilitate future research on person authentication using unimodal, multimodal, and even cross-modal approaches, as well as research on brain signal and health status analysis.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12628305
書誌情報 研究報告セキュリティ心理学とトラスト(SPT)

巻 2024-SPT-56, 号 9, p. 1-6, 発行日 2024-07-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8671
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 08:59:06.976163
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3