ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 数理モデル化と問題解決(MPS)
  3. 2024
  4. 2024-MPS-149

Vision Transformer-based Meta Loss Landscape Exploration with Actor-Critic Method

https://ipsj.ixsq.nii.ac.jp/records/235609
https://ipsj.ixsq.nii.ac.jp/records/235609
ba923559-bb2c-4821-8cd4-3535601718ae
名前 / ファイル ライセンス アクション
IPSJ-MPS24149012.pdf IPSJ-MPS24149012.pdf (1.4 MB)
 2026年7月15日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, MPS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-07-15
タイトル
タイトル Vision Transformer-based Meta Loss Landscape Exploration with Actor-Critic Method
タイトル
言語 en
タイトル Vision Transformer-based Meta Loss Landscape Exploration with Actor-Critic Method
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Grad. School of Info. Science and Technology Hokkaido University
著者所属
Grad. School of Info. Science and Technology Hokkaido University
著者所属
Grad. School of Info. Science and Technology Hokkaido University
著者所属
Grad. School of Info. Science and Technology Hokkaido University
著者所属
RIKEN Center for Computational Science
著者所属
Information Initiative Center Hokkaido University
著者所属(英)
en
Grad. School of Info. Science and Technology Hokkaido University
著者所属(英)
en
Grad. School of Info. Science and Technology Hokkaido University
著者所属(英)
en
Grad. School of Info. Science and Technology Hokkaido University
著者所属(英)
en
Grad. School of Info. Science and Technology Hokkaido University
著者所属(英)
en
RIKEN Center for Computational Science
著者所属(英)
en
Information Initiative Center Hokkaido University
著者名 Enzhi, Zhang

× Enzhi, Zhang

Enzhi, Zhang

Search repository
Xuanyi, Wu

× Xuanyi, Wu

Xuanyi, Wu

Search repository
Rui, Zhong

× Rui, Zhong

Rui, Zhong

Search repository
Xingbang, Du

× Xingbang, Du

Xingbang, Du

Search repository
Mohamed, Wahib

× Mohamed, Wahib

Mohamed, Wahib

Search repository
Masaharu, Munetomo

× Masaharu, Munetomo

Masaharu, Munetomo

Search repository
著者名(英) Enzhi, Zhang

× Enzhi, Zhang

en Enzhi, Zhang

Search repository
Xuanyi, Wu

× Xuanyi, Wu

en Xuanyi, Wu

Search repository
Rui, Zhong

× Rui, Zhong

en Rui, Zhong

Search repository
Xingbang, Du

× Xingbang, Du

en Xingbang, Du

Search repository
Mohamed, Wahib

× Mohamed, Wahib

en Mohamed, Wahib

Search repository
Masaharu, Munetomo

× Masaharu, Munetomo

en Masaharu, Munetomo

Search repository
論文抄録
内容記述タイプ Other
内容記述 Detecting and mitigating overfitting in deep neural networks remains a critical challenge in modern machine learning. This paper investigates innovative approaches to address these challenges, particularly focusing on vision transformer-based models. By leveraging meta-learning techniques and reinforcement learning frameworks, we introduce Transformer-based Loss Landscape Exploration (TLLE), which utilizes the validation loss landscape to guide gradient descent optimization. Unlike conventional methods, TLLE employs the Actor-Critic algorithm to learn the mapping from model weights to future values, facilitating efficient sample collection and precise value predictions. Experimental results demonstrate the superior performance of TLLE-enhanced transformer models in image classification and segmentation tasks, showcasing the efficacy of our approach in optimizing deep learning models for image analysis.
論文抄録(英)
内容記述タイプ Other
内容記述 Detecting and mitigating overfitting in deep neural networks remains a critical challenge in modern machine learning. This paper investigates innovative approaches to address these challenges, particularly focusing on vision transformer-based models. By leveraging meta-learning techniques and reinforcement learning frameworks, we introduce Transformer-based Loss Landscape Exploration (TLLE), which utilizes the validation loss landscape to guide gradient descent optimization. Unlike conventional methods, TLLE employs the Actor-Critic algorithm to learn the mapping from model weights to future values, facilitating efficient sample collection and precise value predictions. Experimental results demonstrate the superior performance of TLLE-enhanced transformer models in image classification and segmentation tasks, showcasing the efficacy of our approach in optimizing deep learning models for image analysis.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10505667
書誌情報 研究報告数理モデル化と問題解決(MPS)

巻 2024-MPS-149, 号 12, p. 1-5, 発行日 2024-07-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8833
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 09:35:35.646808
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3