Item type |
SIG Technical Reports(1) |
公開日 |
2024-07-15 |
タイトル |
|
|
タイトル |
Vision Transformer-based Meta Loss Landscape Exploration with Actor-Critic Method |
タイトル |
|
|
言語 |
en |
|
タイトル |
Vision Transformer-based Meta Loss Landscape Exploration with Actor-Critic Method |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
Grad. School of Info. Science and Technology Hokkaido University |
著者所属 |
|
|
|
Grad. School of Info. Science and Technology Hokkaido University |
著者所属 |
|
|
|
Grad. School of Info. Science and Technology Hokkaido University |
著者所属 |
|
|
|
Grad. School of Info. Science and Technology Hokkaido University |
著者所属 |
|
|
|
RIKEN Center for Computational Science |
著者所属 |
|
|
|
Information Initiative Center Hokkaido University |
著者所属(英) |
|
|
|
en |
|
|
Grad. School of Info. Science and Technology Hokkaido University |
著者所属(英) |
|
|
|
en |
|
|
Grad. School of Info. Science and Technology Hokkaido University |
著者所属(英) |
|
|
|
en |
|
|
Grad. School of Info. Science and Technology Hokkaido University |
著者所属(英) |
|
|
|
en |
|
|
Grad. School of Info. Science and Technology Hokkaido University |
著者所属(英) |
|
|
|
en |
|
|
RIKEN Center for Computational Science |
著者所属(英) |
|
|
|
en |
|
|
Information Initiative Center Hokkaido University |
著者名 |
Enzhi, Zhang
Xuanyi, Wu
Rui, Zhong
Xingbang, Du
Mohamed, Wahib
Masaharu, Munetomo
|
著者名(英) |
Enzhi, Zhang
Xuanyi, Wu
Rui, Zhong
Xingbang, Du
Mohamed, Wahib
Masaharu, Munetomo
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Detecting and mitigating overfitting in deep neural networks remains a critical challenge in modern machine learning. This paper investigates innovative approaches to address these challenges, particularly focusing on vision transformer-based models. By leveraging meta-learning techniques and reinforcement learning frameworks, we introduce Transformer-based Loss Landscape Exploration (TLLE), which utilizes the validation loss landscape to guide gradient descent optimization. Unlike conventional methods, TLLE employs the Actor-Critic algorithm to learn the mapping from model weights to future values, facilitating efficient sample collection and precise value predictions. Experimental results demonstrate the superior performance of TLLE-enhanced transformer models in image classification and segmentation tasks, showcasing the efficacy of our approach in optimizing deep learning models for image analysis. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Detecting and mitigating overfitting in deep neural networks remains a critical challenge in modern machine learning. This paper investigates innovative approaches to address these challenges, particularly focusing on vision transformer-based models. By leveraging meta-learning techniques and reinforcement learning frameworks, we introduce Transformer-based Loss Landscape Exploration (TLLE), which utilizes the validation loss landscape to guide gradient descent optimization. Unlike conventional methods, TLLE employs the Actor-Critic algorithm to learn the mapping from model weights to future values, facilitating efficient sample collection and precise value predictions. Experimental results demonstrate the superior performance of TLLE-enhanced transformer models in image classification and segmentation tasks, showcasing the efficacy of our approach in optimizing deep learning models for image analysis. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN10505667 |
書誌情報 |
研究報告数理モデル化と問題解決(MPS)
巻 2024-MPS-149,
号 12,
p. 1-5,
発行日 2024-07-15
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8833 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |