ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 数理モデル化と問題解決(MPS)
  3. 2024
  4. 2024-MPS-149

Jump Like a Frog: Optimization of Renewable Energy Prediction in Smart Gird Based on Ultra Long Term Network

https://ipsj.ixsq.nii.ac.jp/records/235608
https://ipsj.ixsq.nii.ac.jp/records/235608
67181fda-41c1-4439-9ac9-6c76339eac90
名前 / ファイル ライセンス アクション
IPSJ-MPS24149011.pdf IPSJ-MPS24149011.pdf (1.3 MB)
 2026年7月15日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, MPS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-07-15
タイトル
タイトル Jump Like a Frog: Optimization of Renewable Energy Prediction in Smart Gird Based on Ultra Long Term Network
タイトル
言語 en
タイトル Jump Like a Frog: Optimization of Renewable Energy Prediction in Smart Gird Based on Ultra Long Term Network
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Hokkaido University
著者所属
Hokkaido University
著者所属(英)
en
Hokkaido University
著者所属(英)
en
Hokkaido University
著者名 Xingbang, Du

× Xingbang, Du

Xingbang, Du

Search repository
Enzhi, Zhang

× Enzhi, Zhang

Enzhi, Zhang

Search repository
著者名(英) Xingbang, Du

× Xingbang, Du

en Xingbang, Du

Search repository
Enzhi, Zhang

× Enzhi, Zhang

en Enzhi, Zhang

Search repository
論文抄録
内容記述タイプ Other
内容記述 Renewable energy generation forecasting plays crucial roles in advanced smart grid and sustainable practices. Although many RNN related methods have been utilized to predict power generation time series data, they often struggle to capture very long-term correlations efficiently due to the vanishing gradient issue. To address this challenge, we have introduced the Ultra long term network model that incorporated LSTM , SKIP LSTM and Dense components. This model effectively captures long-term patterns while mitigating the vanishing gradient problem associated with capturing very long term patterns. Our application of this model to renewable power prediction has yielded better performance when compared through metrics like MSE and MAE than previous models such as LSTM, GRU and Simple RNN models in time series analysis within smart grids. The integration of this model holds promise for enhancing the intelligence of renewable energy grids.
論文抄録(英)
内容記述タイプ Other
内容記述 Renewable energy generation forecasting plays crucial roles in advanced smart grid and sustainable practices. Although many RNN related methods have been utilized to predict power generation time series data, they often struggle to capture very long-term correlations efficiently due to the vanishing gradient issue. To address this challenge, we have introduced the Ultra long term network model that incorporated LSTM , SKIP LSTM and Dense components. This model effectively captures long-term patterns while mitigating the vanishing gradient problem associated with capturing very long term patterns. Our application of this model to renewable power prediction has yielded better performance when compared through metrics like MSE and MAE than previous models such as LSTM, GRU and Simple RNN models in time series analysis within smart grids. The integration of this model holds promise for enhancing the intelligence of renewable energy grids.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10505667
書誌情報 研究報告数理モデル化と問題解決(MPS)

巻 2024-MPS-149, 号 11, p. 1-4, 発行日 2024-07-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8833
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 09:35:36.682282
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3