ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 数理モデル化と問題解決(MPS)
  3. 2024
  4. 2024-MPS-149

Hyper-heuristic Differential Evolution with Novel Boundary Repair for Numerical Optimization

https://ipsj.ixsq.nii.ac.jp/records/235607
https://ipsj.ixsq.nii.ac.jp/records/235607
39d38839-142e-45f1-8d11-ce9c536e0c45
名前 / ファイル ライセンス アクション
IPSJ-MPS24149010.pdf IPSJ-MPS24149010.pdf (891.2 kB)
 2026年7月15日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, MPS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-07-15
タイトル
タイトル Hyper-heuristic Differential Evolution with Novel Boundary Repair for Numerical Optimization
タイトル
言語 en
タイトル Hyper-heuristic Differential Evolution with Novel Boundary Repair for Numerical Optimization
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Information Science and Technology, Hokkaido University
著者所属
Institute of Science and Technology, Niigata University
著者所属
Information Initiative Center, Hokkaido University
著者所属(英)
en
Graduate School of Information Science and Technology, Hokkaido University
著者所属(英)
en
Institute of Science and Technology, Niigata University
著者所属(英)
en
Information Initiative Center, Hokkaido University
著者名 Rui, Zhong

× Rui, Zhong

Rui, Zhong

Search repository
Jun, Yu

× Jun, Yu

Jun, Yu

Search repository
Masaharu, Munetomo

× Masaharu, Munetomo

Masaharu, Munetomo

Search repository
著者名(英) Rui, Zhong

× Rui, Zhong

en Rui, Zhong

Search repository
Jun, Yu

× Jun, Yu

en Jun, Yu

Search repository
Masaharu, Munetomo

× Masaharu, Munetomo

en Masaharu, Munetomo

Search repository
論文抄録
内容記述タイプ Other
内容記述 This paper proposes a novel hyper-heuristic differential evolution (HHDE). We design mutation archive, crossover archive, and boundary repair archive as low-level heuristics of HHDE. A learning-free selection function is employed as the high-level component. Comprehensive numerical experiments on CEC2022 benchmark functions are conducted to assess the efficacy of our proposed HHDE. The performance of HHDE was compared against a range of other state-of-the-art competitor optimizers. The experimental results and statistical analysis confirm the competitiveness and efficiency of HHDE.
論文抄録(英)
内容記述タイプ Other
内容記述 This paper proposes a novel hyper-heuristic differential evolution (HHDE). We design mutation archive, crossover archive, and boundary repair archive as low-level heuristics of HHDE. A learning-free selection function is employed as the high-level component. Comprehensive numerical experiments on CEC2022 benchmark functions are conducted to assess the efficacy of our proposed HHDE. The performance of HHDE was compared against a range of other state-of-the-art competitor optimizers. The experimental results and statistical analysis confirm the competitiveness and efficiency of HHDE.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10505667
書誌情報 研究報告数理モデル化と問題解決(MPS)

巻 2024-MPS-149, 号 10, p. 1-5, 発行日 2024-07-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8833
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 09:35:37.894604
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3