Item type |
SIG Technical Reports(1) |
公開日 |
2024-07-15 |
タイトル |
|
|
タイトル |
Hyper-heuristic Differential Evolution with Novel Boundary Repair for Numerical Optimization |
タイトル |
|
|
言語 |
en |
|
タイトル |
Hyper-heuristic Differential Evolution with Novel Boundary Repair for Numerical Optimization |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
Graduate School of Information Science and Technology, Hokkaido University |
著者所属 |
|
|
|
Institute of Science and Technology, Niigata University |
著者所属 |
|
|
|
Information Initiative Center, Hokkaido University |
著者所属(英) |
|
|
|
en |
|
|
Graduate School of Information Science and Technology, Hokkaido University |
著者所属(英) |
|
|
|
en |
|
|
Institute of Science and Technology, Niigata University |
著者所属(英) |
|
|
|
en |
|
|
Information Initiative Center, Hokkaido University |
著者名 |
Rui, Zhong
Jun, Yu
Masaharu, Munetomo
|
著者名(英) |
Rui, Zhong
Jun, Yu
Masaharu, Munetomo
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
This paper proposes a novel hyper-heuristic differential evolution (HHDE). We design mutation archive, crossover archive, and boundary repair archive as low-level heuristics of HHDE. A learning-free selection function is employed as the high-level component. Comprehensive numerical experiments on CEC2022 benchmark functions are conducted to assess the efficacy of our proposed HHDE. The performance of HHDE was compared against a range of other state-of-the-art competitor optimizers. The experimental results and statistical analysis confirm the competitiveness and efficiency of HHDE. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
This paper proposes a novel hyper-heuristic differential evolution (HHDE). We design mutation archive, crossover archive, and boundary repair archive as low-level heuristics of HHDE. A learning-free selection function is employed as the high-level component. Comprehensive numerical experiments on CEC2022 benchmark functions are conducted to assess the efficacy of our proposed HHDE. The performance of HHDE was compared against a range of other state-of-the-art competitor optimizers. The experimental results and statistical analysis confirm the competitiveness and efficiency of HHDE. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN10505667 |
書誌情報 |
研究報告数理モデル化と問題解決(MPS)
巻 2024-MPS-149,
号 10,
p. 1-5,
発行日 2024-07-15
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8833 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |