ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 自然言語処理(NL)
  3. 2024
  4. 2024-NL-260

Towards a Benchmark Dataset for Stress-testing Fallacy Detection Models

https://ipsj.ixsq.nii.ac.jp/records/235109
https://ipsj.ixsq.nii.ac.jp/records/235109
2a8af155-ad23-42bb-9b15-550520481262
名前 / ファイル ライセンス アクション
IPSJ-NL24260018.pdf IPSJ-NL24260018.pdf (1.3 MB)
 2026年6月21日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, NL:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-06-21
タイトル
タイトル Towards a Benchmark Dataset for Stress-testing Fallacy Detection Models
タイトル
言語 en
タイトル Towards a Benchmark Dataset for Stress-testing Fallacy Detection Models
言語
言語 eng
キーワード
主題Scheme Other
主題 言語資源 (2)
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Japan Advanced Institute of Science and Technology
著者所属
Beyond Reason
著者所属
Japan Advanced Institute of Science and Technology/RIKEN
著者所属
Japan Advanced Institute of Science and Technology
著者所属
Insa Lyon
著者所属
Tohoku University
著者所属
Ricoh Company, Ltd.
著者所属
RIKEN
著者所属
Mohamed bin Zayed University of Artificial Intelligence/RIKEN/Tohoku University
著者所属(英)
en
Japan Advanced Institute of Science and Technology
著者所属(英)
en
Beyond Reason
著者所属(英)
en
Japan Advanced Institute of Science and Technology / RIKEN
著者所属(英)
en
Japan Advanced Institute of Science and Technology
著者所属(英)
en
Insa Lyon
著者所属(英)
en
Tohoku University
著者所属(英)
en
Ricoh Company, Ltd.
著者所属(英)
en
RIKEN
著者所属(英)
en
Mohamed bin Zayed University of Artificial Intelligence / RIKEN / Tohoku University
著者名 Surawat, Pothong

× Surawat, Pothong

Surawat, Pothong

Search repository
Paul, Reisert

× Paul, Reisert

Paul, Reisert

Search repository
Naoya, Inoue

× Naoya, Inoue

Naoya, Inoue

Search repository
Irfan, Robbani

× Irfan, Robbani

Irfan, Robbani

Search repository
CaméLia, Guerraoui

× CaméLia, Guerraoui

CaméLia, Guerraoui

Search repository
Wenzhi, Wang

× Wenzhi, Wang

Wenzhi, Wang

Search repository
Shoichi, Naito

× Shoichi, Naito

Shoichi, Naito

Search repository
Jungmin, Choi

× Jungmin, Choi

Jungmin, Choi

Search repository
Kentaro, Inui

× Kentaro, Inui

Kentaro, Inui

Search repository
著者名(英) Surawat, Pothong

× Surawat, Pothong

en Surawat, Pothong

Search repository
Paul, Reisert

× Paul, Reisert

en Paul, Reisert

Search repository
Naoya, Inoue

× Naoya, Inoue

en Naoya, Inoue

Search repository
Irfan, Robbani

× Irfan, Robbani

en Irfan, Robbani

Search repository
CaméLia, Guerraoui

× CaméLia, Guerraoui

en CaméLia, Guerraoui

Search repository
Wenzhi, Wang

× Wenzhi, Wang

en Wenzhi, Wang

Search repository
Shoichi, Naito

× Shoichi, Naito

en Shoichi, Naito

Search repository
Jungmin, Choi

× Jungmin, Choi

en Jungmin, Choi

Search repository
Kentaro, Inui

× Kentaro, Inui

en Kentaro, Inui

Search repository
論文抄録
内容記述タイプ Other
内容記述 Arguments with logical fallacies are common in daily discourse. While several benchmark datasets for automated fallacy detection exist [1], none are specifically designed for stress-testing models' ability to assess the validity of underlying logic in the arguments. To address this issue, inspired by the Winograd Schema Challenge, we introduce a pilot benchmark dataset for fallacy detection. Our dataset consists of minimally different pairs of arguments that differ only in their degree of fallaciousness. We report the results of a pilot annotation study and preliminary experiments with large language models. Finally, we discuss potential future directions.
論文抄録(英)
内容記述タイプ Other
内容記述 Arguments with logical fallacies are common in daily discourse. While several benchmark datasets for automated fallacy detection exist [1], none are specifically designed for stress-testing models' ability to assess the validity of underlying logic in the arguments. To address this issue, inspired by the Winograd Schema Challenge, we introduce a pilot benchmark dataset for fallacy detection. Our dataset consists of minimally different pairs of arguments that differ only in their degree of fallaciousness. We report the results of a pilot annotation study and preliminary experiments with large language models. Finally, we discuss potential future directions.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10115061
書誌情報 研究報告自然言語処理(NL)

巻 2024-NL-260, 号 18, p. 1-6, 発行日 2024-06-21
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8779
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 09:36:32.025668
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3