@techreport{oai:ipsj.ixsq.nii.ac.jp:00234918,
 author = {張, 宏毅 and 山内, ゆかり and Hongyi, Zhang and Yukari, Yamauchi},
 issue = {31},
 month = {Jun},
 note = {自然言語処理において,単語の特徴量をベクトル化する Word Embedding が必要である.Mikolov らはニューラルネットワークを用いて,大量のテキストデータから単語間の関係を学習する Word2vec を提案した. Word2Vec は高速で効率的な学習が特徴だが,小規模なデータセットで Embedding すると過学習の恐れがある.本研究では自己組織的手法による Word Embedding を提案し,自己組織化の特性により小規模なデータセットで局所的な知識の構築に有効な手法の構築を目指す., In natural language processing, word embedding is essential for vectorizing word features. Mikolov et al. proposed Word2vec, which uses neural networks to learn relationships between words from large text corpora. Word2vec is known for its fast and efficient learning, but there is a risk of overfitting when embedding with small datasets. In this study, we propose a word embedding method based on self-organizing techniques. By leveraging the properties of self-organization, we aim to develop an effective method for constructing local knowledge in small datasets.},
 title = {自己組織化によるWord Embedding手法の提案},
 year = {2024}
}