ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 数理モデル化と問題解決(MPS)
  3. 2024
  4. 2024-MPS-148

対照学習を用いたグラフニューラルネットワークによる化合物の特性予測の最適化

https://ipsj.ixsq.nii.ac.jp/records/234902
https://ipsj.ixsq.nii.ac.jp/records/234902
be52cd86-ef99-4886-a52b-1810a01d1183
名前 / ファイル ライセンス アクション
IPSJ-MPS24148015.pdf IPSJ-MPS24148015.pdf (986.8 kB)
 2026年6月13日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, MPS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-06-13
タイトル
タイトル 対照学習を用いたグラフニューラルネットワークによる化合物の特性予測の最適化
言語
言語 jpn
キーワード
主題Scheme Other
主題 バイオ情報学1
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
東京工業大学情報理工学院情報工学系
著者所属
東京工業大学情報理工学院情報工学系
著者所属
東京工業大学情報理工学院情報工学系
著者所属(英)
en
Department of Computer Science, School of Computing, Tokyo Institute of Technology
著者所属(英)
en
Department of Computer Science, School of Computing, Tokyo Institute of Technology
著者所属(英)
en
Department of Computer Science, School of Computing, Tokyo Institute of Technology
著者名 青木, 滉志郎

× 青木, 滉志郎

青木, 滉志郎

Search repository
Apakorn, Kengkanna

× Apakorn, Kengkanna

Apakorn, Kengkanna

Search repository
大上, 雅史

× 大上, 雅史

大上, 雅史

Search repository
論文抄録
内容記述タイプ Other
内容記述 創薬プロセスの効率化を目的として,化合物の物性や標的分子に対する活性を機械学習によって予測するバーチャルスクリーニング技術が活用されている.しかし化合物の特性ラベルの得られたデータの不足という問題が存在する.そのため本研究では,大量のラベルなしデータを用いた事前学習法である対照学習に注目し,対照学習におけるラベルなしデータの水増し処理法(augment 手法)を最適化することで,化合物の特性予測精度向上に寄与する要素の検証を行った.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10505667
書誌情報 研究報告数理モデル化と問題解決(MPS)

巻 2024-MPS-148, 号 15, p. 1-7, 発行日 2024-06-13
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8833
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 09:40:34.075776
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3