WEKO3
アイテム
SpatialPPI: Three-dimensional space protein-protein interaction prediction with AlphaFold Multimer
https://ipsj.ixsq.nii.ac.jp/records/234840
https://ipsj.ixsq.nii.ac.jp/records/234840dc6f4914-44a8-4ea6-9087-524161b64e2f
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]()
2026年6月13日からダウンロード可能です。
|
Copyright (c) 2024 by the Information Processing Society of Japan
|
|
非会員:¥660, IPSJ:学会員:¥330, BIO:会員:¥0, DLIB:会員:¥0 |
Item type | SIG Technical Reports(1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2024-06-13 | |||||||||
タイトル | ||||||||||
タイトル | SpatialPPI: Three-dimensional space protein-protein interaction prediction with AlphaFold Multimer | |||||||||
タイトル | ||||||||||
言語 | en | |||||||||
タイトル | SpatialPPI: Three-dimensional space protein-protein interaction prediction with AlphaFold Multimer | |||||||||
言語 | ||||||||||
言語 | eng | |||||||||
キーワード | ||||||||||
主題Scheme | Other | |||||||||
主題 | バイオ情報学1 | |||||||||
資源タイプ | ||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_18gh | |||||||||
資源タイプ | technical report | |||||||||
著者所属 | ||||||||||
Department of Computer Science, School of Computing, Tokyo Institute of Technology | ||||||||||
著者所属 | ||||||||||
Department of Computer Science, School of Computing, Tokyo Institute of Technology | ||||||||||
著者所属(英) | ||||||||||
en | ||||||||||
Department of Computer Science, School of Computing, Tokyo Institute of Technology | ||||||||||
著者所属(英) | ||||||||||
en | ||||||||||
Department of Computer Science, School of Computing, Tokyo Institute of Technology | ||||||||||
著者名 |
Wenxing, Hu
× Wenxing, Hu
× Masahito, Ohue
|
|||||||||
著者名(英) |
Wenxing, Hu
× Wenxing, Hu
× Masahito, Ohue
|
|||||||||
論文抄録 | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | Rapid advancements in protein sequencing technology have resulted in gaps between proteins with identified sequences and those with mapped structures. Although sequence-based predictions offer insights, they can be incomplete due to the absence of structural details. Conversely, structure-based methods face challenges with respect to newly sequenced proteins. The AlphaFold Multimer has remarkable accuracy in predicting the structure of protein complexes. However, it cannot distinguish whether the input protein sequences can interact. Nonetheless, by analyzing the information in the models predicted by the AlphaFold Multimer, we propose a highly accurate method for predicting protein interactions. This study focuses on the use of deep neural networks, specifically to analyze protein complex structures predicted by the AlphaFold Multimer. By transforming atomic coordinates and utilizing sophisticated image-processing techniques, vital 3D structural details were extracted from protein complexes. Recognizing the significance of evaluating residue distances in protein interactions, this study leveraged image recognition approaches by integrating Densely Connected Convolutional Networks (DenseNet) and Deep Residual Network (ResNet) within 3D convolutional networks for protein 3D structure analysis. When benchmarked against leading protein-protein interaction prediction methods, such as SpeedPPI, D-script, DeepTrio, and PEPPI, our proposed method, named SpatialPPI, exhibited notable efficacy, emphasizing the promising role of 3D spatial processing in advancing the realm of structural biology. | |||||||||
論文抄録(英) | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | Rapid advancements in protein sequencing technology have resulted in gaps between proteins with identified sequences and those with mapped structures. Although sequence-based predictions offer insights, they can be incomplete due to the absence of structural details. Conversely, structure-based methods face challenges with respect to newly sequenced proteins. The AlphaFold Multimer has remarkable accuracy in predicting the structure of protein complexes. However, it cannot distinguish whether the input protein sequences can interact. Nonetheless, by analyzing the information in the models predicted by the AlphaFold Multimer, we propose a highly accurate method for predicting protein interactions. This study focuses on the use of deep neural networks, specifically to analyze protein complex structures predicted by the AlphaFold Multimer. By transforming atomic coordinates and utilizing sophisticated image-processing techniques, vital 3D structural details were extracted from protein complexes. Recognizing the significance of evaluating residue distances in protein interactions, this study leveraged image recognition approaches by integrating Densely Connected Convolutional Networks (DenseNet) and Deep Residual Network (ResNet) within 3D convolutional networks for protein 3D structure analysis. When benchmarked against leading protein-protein interaction prediction methods, such as SpeedPPI, D-script, DeepTrio, and PEPPI, our proposed method, named SpatialPPI, exhibited notable efficacy, emphasizing the promising role of 3D spatial processing in advancing the realm of structural biology. | |||||||||
書誌レコードID | ||||||||||
収録物識別子タイプ | NCID | |||||||||
収録物識別子 | AA12055912 | |||||||||
書誌情報 |
研究報告バイオ情報学(BIO) 巻 2024-BIO-78, 号 13, p. 1-8, 発行日 2024-06-13 |
|||||||||
ISSN | ||||||||||
収録物識別子タイプ | ISSN | |||||||||
収録物識別子 | 2188-8590 | |||||||||
Notice | ||||||||||
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. | ||||||||||
出版者 | ||||||||||
言語 | ja | |||||||||
出版者 | 情報処理学会 |