ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 音声言語情報処理(SLP)
  3. 2024
  4. 2024-SLP-152

Enhancing Feature Integration to Improve Classification Accuracy of Similar Categories in Acoustic Scene Classification

https://ipsj.ixsq.nii.ac.jp/records/234740
https://ipsj.ixsq.nii.ac.jp/records/234740
69351e0e-ca9f-472b-a196-da42752eb2db
名前 / ファイル ライセンス アクション
IPSJ-SLP24152053.pdf IPSJ-SLP24152053.pdf (5.0 MB)
 2026年6月7日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, SLP:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-06-07
タイトル
タイトル Enhancing Feature Integration to Improve Classification Accuracy of Similar Categories in Acoustic Scene Classification
タイトル
言語 en
タイトル Enhancing Feature Integration to Improve Classification Accuracy of Similar Categories in Acoustic Scene Classification
言語
言語 eng
キーワード
主題Scheme Other
主題 ポスターセッション2
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
The University of Tokyo
著者所属
The University of Tokyo
著者所属
The University of Tokyo
著者所属(英)
en
The University of Tokyo
著者所属(英)
en
The University of Tokyo
著者所属(英)
en
The University of Tokyo
著者名 Shuting, Hao

× Shuting, Hao

Shuting, Hao

Search repository
Daisuke, Saito

× Daisuke, Saito

Daisuke, Saito

Search repository
Nobuaki, Minematsu

× Nobuaki, Minematsu

Nobuaki, Minematsu

Search repository
著者名(英) Shuting, Hao

× Shuting, Hao

en Shuting, Hao

Search repository
Daisuke, Saito

× Daisuke, Saito

en Daisuke, Saito

Search repository
Nobuaki, Minematsu

× Nobuaki, Minematsu

en Nobuaki, Minematsu

Search repository
論文抄録
内容記述タイプ Other
内容記述 This study focuses on Acoustic Scene Classification (ASC), which categorizes environmental audio streams into predefined semantic labels. We introduce a novel architecture that integrates multi-layer classifiers and direct finetuning, presenting a new perspective in ASC research. The study employs the TAU Urban Acoustic Scenes 2022 Mobile dataset for fine-tuning and validation. We utilized the SSAST model, pre-trained on the AudioSet and LibriSpeech datasets, and fine-tuned it on the TAU dataset with a unique approach to enhance ASC-specific feature learning. Our layered SSAST system achieved an accuracy of 52.17% and an AUC of 88.66% in ASC, marking a notable improvement over the baseline with absolute increases of 0.99% in accuracy and 0.85% in AUC.
論文抄録(英)
内容記述タイプ Other
内容記述 This study focuses on Acoustic Scene Classification (ASC), which categorizes environmental audio streams into predefined semantic labels. We introduce a novel architecture that integrates multi-layer classifiers and direct finetuning, presenting a new perspective in ASC research. The study employs the TAU Urban Acoustic Scenes 2022 Mobile dataset for fine-tuning and validation. We utilized the SSAST model, pre-trained on the AudioSet and LibriSpeech datasets, and fine-tuned it on the TAU dataset with a unique approach to enhance ASC-specific feature learning. Our layered SSAST system achieved an accuracy of 52.17% and an AUC of 88.66% in ASC, marking a notable improvement over the baseline with absolute increases of 0.99% in accuracy and 0.85% in AUC.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10442647
書誌情報 研究報告音声言語情報処理(SLP)

巻 2024-SLP-152, 号 53, p. 1-5, 発行日 2024-06-07
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8663
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 09:42:27.011666
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3