ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 音楽情報科学(MUS)
  3. 2024
  4. 2024-MUS-140

Beyond Word Count: Exploring Approximated Target Lengths for CIF-RNNT

https://ipsj.ixsq.nii.ac.jp/records/234649
https://ipsj.ixsq.nii.ac.jp/records/234649
cdbe1909-9612-4631-984f-783c306c8372
名前 / ファイル ライセンス アクション
IPSJ-MUS24140037.pdf IPSJ-MUS24140037.pdf (1.9 MB)
Copyright (c) 2024 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
MUS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-06-07
タイトル
タイトル Beyond Word Count: Exploring Approximated Target Lengths for CIF-RNNT
タイトル
言語 en
タイトル Beyond Word Count: Exploring Approximated Target Lengths for CIF-RNNT
言語
言語 eng
キーワード
主題Scheme Other
主題 ポスターセッション1
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
The University of Electro-Communications
著者所属
The University of Electro-Communications
著者所属(英)
en
The University of Electro-Communications
著者所属(英)
en
The University of Electro-Communications
著者名 Wen, Shen Teo

× Wen, Shen Teo

Wen, Shen Teo

Search repository
Yasuhiro, Minami

× Yasuhiro, Minami

Yasuhiro, Minami

Search repository
著者名(英) Wen, Shen Teo

× Wen, Shen Teo

en Wen, Shen Teo

Search repository
Yasuhiro, Minami

× Yasuhiro, Minami

en Yasuhiro, Minami

Search repository
論文抄録
内容記述タイプ Other
内容記述 Our previous work proposed the CIF-RNNT architecture, a combination of Continuous Integrate-and-Fire (CIF) and RNN-Transducers (RNN-T) that compresses speech into units equivalent to linguistic words to achieve efficient decoding. This work extends on that research by investigating the impact of different target length definitions, approximated from self-information and token count. Our results on LibriSpeech and CSJ show that approximated target length types based on self-information outperform simpler approaches, and CIF-RNNT models even surpass topline models on the CSJ dataset at smaller chunk sizes. Furthermore, our comparisons demonstrate an inherent ability of CIF-RNNT to produce output tokens in groups of words, regardless of the target length type. These results showcase the potential of the CIF-RNNT architecture for efficient and accurate speech recognition.
論文抄録(英)
内容記述タイプ Other
内容記述 Our previous work proposed the CIF-RNNT architecture, a combination of Continuous Integrate-and-Fire (CIF) and RNN-Transducers (RNN-T) that compresses speech into units equivalent to linguistic words to achieve efficient decoding. This work extends on that research by investigating the impact of different target length definitions, approximated from self-information and token count. Our results on LibriSpeech and CSJ show that approximated target length types based on self-information outperform simpler approaches, and CIF-RNNT models even surpass topline models on the CSJ dataset at smaller chunk sizes. Furthermore, our comparisons demonstrate an inherent ability of CIF-RNNT to produce output tokens in groups of words, regardless of the target length type. These results showcase the potential of the CIF-RNNT architecture for efficient and accurate speech recognition.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10438388
書誌情報 研究報告音楽情報科学(MUS)

巻 2024-MUS-140, 号 37, p. 1-5, 発行日 2024-06-07
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8752
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 09:44:18.007915
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3