ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. コンシューマ・デバイス&システム(CDS)
  3. Vol.14
  4. No.2

Fast Screen Orientation Adjustment Based on SVM Rotation Inference on Android Smartphones

https://ipsj.ixsq.nii.ac.jp/records/234377
https://ipsj.ixsq.nii.ac.jp/records/234377
17c01856-ffa7-4dde-9ec6-f6668a321033
名前 / ファイル ライセンス アクション
IPSJ-TCDS1402006.pdf IPSJ-TCDS1402006.pdf (677.3 kB)
 2026年5月24日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, CDS:会員:¥0, DLIB:会員:¥0
Item type Trans(1)
公開日 2024-05-24
タイトル
タイトル Fast Screen Orientation Adjustment Based on SVM Rotation Inference on Android Smartphones
タイトル
言語 en
タイトル Fast Screen Orientation Adjustment Based on SVM Rotation Inference on Android Smartphones
言語
言語 eng
キーワード
主題Scheme Other
主題 [研究論文] Android, smartphone, accelerometer, acceleration, SVM, support vector machine, ML, machine learning, screen view orientation
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Kogakuin University
著者所属
Nagasaki University
著者所属
Ochanomizu University
著者所属
Kogakuin University
著者所属(英)
en
Kogakuin University
著者所属(英)
en
Nagasaki University
著者所属(英)
en
Ochanomizu University
著者所属(英)
en
Kogakuin University
著者名 Koga, Toriumi

× Koga, Toriumi

Koga, Toriumi

Search repository
Takeshi, Kamiyama

× Takeshi, Kamiyama

Takeshi, Kamiyama

Search repository
Masato, Oguchi

× Masato, Oguchi

Masato, Oguchi

Search repository
Saneyasu, Yamaguchi

× Saneyasu, Yamaguchi

Saneyasu, Yamaguchi

Search repository
著者名(英) Koga, Toriumi

× Koga, Toriumi

en Koga, Toriumi

Search repository
Takeshi, Kamiyama

× Takeshi, Kamiyama

en Takeshi, Kamiyama

Search repository
Masato, Oguchi

× Masato, Oguchi

en Masato, Oguchi

Search repository
Saneyasu, Yamaguchi

× Saneyasu, Yamaguchi

en Saneyasu, Yamaguchi

Search repository
論文抄録
内容記述タイプ Other
内容記述 Smartphones can be used in portrait or landscape mode, and their operating systems detect the device orientation and automatically adjust the screen view orientation. However, the adjustment policy is pessimistic, and the delay between device rotation and screen view rotation is large. We believe that this delay may degrade the user experience. In this paper, we propose a method to predict device rotation in the near future based on acceleration using a support vector machine, and to quickly adjust the screen view orientation based on the prediction results. We then show that the method can predict device rotation with high or non-low accuracy (with low false positive and false negative probabilities) and that the method can adjust the screen view orientation with a short delay time through our experimental results on three to six subjects using a smartphone with the Android operating system installed with the proposed method.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.32(2024) (online)
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Smartphones can be used in portrait or landscape mode, and their operating systems detect the device orientation and automatically adjust the screen view orientation. However, the adjustment policy is pessimistic, and the delay between device rotation and screen view rotation is large. We believe that this delay may degrade the user experience. In this paper, we propose a method to predict device rotation in the near future based on acceleration using a support vector machine, and to quickly adjust the screen view orientation based on the prediction results. We then show that the method can predict device rotation with high or non-low accuracy (with low false positive and false negative probabilities) and that the method can adjust the screen view orientation with a short delay time through our experimental results on three to six subjects using a smartphone with the Android operating system installed with the proposed method.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.32(2024) (online)
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12628043
書誌情報 情報処理学会論文誌コンシューマ・デバイス&システム(CDS)

巻 14, 号 2, 発行日 2024-05-24
ISSN
収録物識別子タイプ ISSN
収録物識別子 2186-5728
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 09:48:39.749197
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3