ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. モバイルコンピューティングと新社会システム(MBL)
  3. 2024
  4. 2024-MBL-111

The Earth Speaks: Advanced Vehicle Classification with Seismic Data

https://ipsj.ixsq.nii.ac.jp/records/233945
https://ipsj.ixsq.nii.ac.jp/records/233945
736e43b4-bd65-49bc-9bf1-b2d3a3da8559
名前 / ファイル ライセンス アクション
IPSJ-MBL24111024.pdf IPSJ-MBL24111024.pdf (480.0 kB)
 2026年5月8日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, MBL:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-05-08
タイトル
タイトル The Earth Speaks: Advanced Vehicle Classification with Seismic Data
タイトル
言語 en
タイトル The Earth Speaks: Advanced Vehicle Classification with Seismic Data
言語
言語 eng
キーワード
主題Scheme Other
主題 [MBL/ITS]自動運転と測位
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Computational Learning Theory Team, RIKEN-AIP
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Computational Learning Theory Team, RIKEN-AIP
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者名 Sherief, Hashima

× Sherief, Hashima

Sherief, Hashima

Search repository
Hamada, Rizk

× Hamada, Rizk

Hamada, Rizk

Search repository
著者名(英) Sherief, Hashima

× Sherief, Hashima

en Sherief, Hashima

Search repository
Hamada, Rizk

× Hamada, Rizk

en Hamada, Rizk

Search repository
論文抄録
内容記述タイプ Other
内容記述 Recently, privacy-preserving vehicle classification (VC) methods have gained great focus, especially with the growing intelligent sensor technologies. Amongst these, seismic-aided VC is a promising intelligent solution but a challenging issue due to the interference of signals sourced from various noises. Seismic-aided VC overcomes the challenges of image/video classification as it can easily/low cost detect the traffic volume without private user information and in different weather conditions. Therefore, this paper proposes an efficient deep learning-based vehicle classification approach within the fractional wavelet domain to identify vehicle categories. The system achieves a high classification accuracy of 98% with real-time processing of 0.05 seconds.
論文抄録(英)
内容記述タイプ Other
内容記述 Recently, privacy-preserving vehicle classification (VC) methods have gained great focus, especially with the growing intelligent sensor technologies. Amongst these, seismic-aided VC is a promising intelligent solution but a challenging issue due to the interference of signals sourced from various noises. Seismic-aided VC overcomes the challenges of image/video classification as it can easily/low cost detect the traffic volume without private user information and in different weather conditions. Therefore, this paper proposes an efficient deep learning-based vehicle classification approach within the fractional wavelet domain to identify vehicle categories. The system achieves a high classification accuracy of 98% with real-time processing of 0.05 seconds.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11851388
書誌情報 研究報告モバイルコンピューティングと新社会システム(MBL)

巻 2024-MBL-111, 号 24, p. 1-7, 発行日 2024-05-08
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8817
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 09:55:45.700776
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3