ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. データベース(TOD)[電子情報通信学会データ工学研究専門委員会共同編集]
  3. Vol.17
  4. No.2

Provide Interpretability of Document Classification by Large Language Models Based on Word Masking

https://ipsj.ixsq.nii.ac.jp/records/233823
https://ipsj.ixsq.nii.ac.jp/records/233823
e3961e0f-28bd-40f8-a889-b061d0917e8a
名前 / ファイル ライセンス アクション
IPSJ-TOD1702002.pdf IPSJ-TOD1702002.pdf (5.3 MB)
 2026年4月23日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, DBS:会員:¥0, IFAT:会員:¥0, DLIB:会員:¥0
Item type Trans(1)
公開日 2024-04-23
タイトル
タイトル Provide Interpretability of Document Classification by Large Language Models Based on Word Masking
タイトル
言語 en
タイトル Provide Interpretability of Document Classification by Large Language Models Based on Word Masking
言語
言語 eng
キーワード
主題Scheme Other
主題 [テクニカルノート] deep learning, news documents classification, LLM, BERT, Attention, word masking
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Kogakuin University
著者所属
Kogakuin University
著者所属(英)
en
Kogakuin University
著者所属(英)
en
Kogakuin University
著者名 Atsuki, Tamekuri

× Atsuki, Tamekuri

Atsuki, Tamekuri

Search repository
Saneyasu, Yamaguchi

× Saneyasu, Yamaguchi

Saneyasu, Yamaguchi

Search repository
著者名(英) Atsuki, Tamekuri

× Atsuki, Tamekuri

en Atsuki, Tamekuri

Search repository
Saneyasu, Yamaguchi

× Saneyasu, Yamaguchi

en Saneyasu, Yamaguchi

Search repository
論文抄録
内容記述タイプ Other
内容記述 Deep neural networks have greatly improved natural language processing and text analysis technologies. In particular, pre-trained large language models have achieved significant improvement. However, it has been argued that they are black boxes and that it is important to provide interpretability. In our previous work, we focused on self-attention and proposed methods for providing and evaluating interpretability. However, the work did not use large language models, and the evaluation method used unusual sentences by deleting words. In this paper, we focus on BERT, which is a popular large language model, and its masking function instead of deleting words. We then show a problem of using this masking function to provide interpretability, which is that the mask token is not neutral for decision. We then propose an evaluation method based on this masking function with training to learn that the mask token is neutral.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.32(2024) (online)
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Deep neural networks have greatly improved natural language processing and text analysis technologies. In particular, pre-trained large language models have achieved significant improvement. However, it has been argued that they are black boxes and that it is important to provide interpretability. In our previous work, we focused on self-attention and proposed methods for providing and evaluating interpretability. However, the work did not use large language models, and the evaluation method used unusual sentences by deleting words. In this paper, we focus on BERT, which is a popular large language model, and its masking function instead of deleting words. We then show a problem of using this masking function to provide interpretability, which is that the mask token is not neutral for decision. We then propose an evaluation method based on this masking function with training to learn that the mask token is neutral.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.32(2024) (online)
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11464847
書誌情報 情報処理学会論文誌データベース(TOD)

巻 17, 号 2, 発行日 2024-04-23
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7799
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 09:58:17.755875
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3