@techreport{oai:ipsj.ixsq.nii.ac.jp:00233807, author = {城戸, 良祐 and 宮地, 充子 and Ryosuke, Kido and Atsuko, Miyaji}, issue = {36}, month = {Mar}, note = {楕円曲線暗号は,楕円曲線上の離散対数問題に基づいた暗号方式であり,他の暗号方式と比較して小さな鍵長で必要な安全性を実現できる利点をもつ.そのため,大きなメモリが使えない IoT 機器への利用が期待されているが,さらなる性能向上のためには, よりコンパクトで効率的な暗号が必要となる.楕円曲線暗号の主演算であるスカラー倍算は, サイドチャネル攻撃(SCA)耐性を持たせた上で効率化を図る必要がある.標数 2 の有限体上の楕円曲線 GLS254 は, 効率的に計算可能な自己準同型により高速化への注目を浴びている.GLS254 には, 例外点のない加算公式を定義可能な (????, ????) 座標を用いた安全なスカラー倍算が提案されている.本研究ではそのスカラー倍算において座標系と加算公式に着目し, より高速な手法を提案する.本提案により,既存のスカラー倍算アルゴリズムよりも 7.1% 速い手法となった., Elliptic curve cryptosystems (ECCs) are cryptographic schemes based on the discrete logarithm problem on an elliptic curve. ECCs are that it can achieve the necessary security with a short key size compared to other cryptographic schemes. Therefore, it is expected to be used in IoT devices that cannot use large memory, but more compact and efficient cryptography is needed to further improve performance. Scalar multiplication, the main operation in ECCs, must be made more efficient while providing side-channel attack (SCA) resistance. Elliptic curve GLS254 defined on a finite field of characteristic 2 has an endomorphism that can be efficiently computed, contributing to efficient scalar multiplication. A secure scalar multiplication using (????, ????) coordinates which can define an addition formula with no exception points has been proposed for GLS254. In this study, we propose a secure and faster method for GLS254 by focusing on the addition formulae and its coordinate system. The result is a method that is faster than the existing scalar multiplication algorithm by 7.1%.}, title = {楕円曲線GLS254の安全なスカラー倍算の高速化}, year = {2024} }