Item type |
SIG Technical Reports(1) |
公開日 |
2024-03-11 |
タイトル |
|
|
タイトル |
APIコールログ解析によるマルウェア機能の早期推定 |
タイトル |
|
|
言語 |
en |
|
タイトル |
Early Presumption of Malware Functions by Analysis of API Call Logs |
言語 |
|
|
言語 |
jpn |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
マルウェア |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
現在,東京工科大学 |
著者所属 |
|
|
|
現在,東京工科大学 |
著者所属 |
|
|
|
現在,東京工科大学 |
著者所属 |
|
|
|
現在,東京工科大学 |
著者所属 |
|
|
|
現在,東京工科大学 |
著者所属 |
|
|
|
現在,東京工科大学 |
著者所属 |
|
|
|
現在,東京工科大学 |
著者所属(英) |
|
|
|
en |
|
|
Presently with Tokyo University of Technology |
著者所属(英) |
|
|
|
en |
|
|
Presently with Tokyo University of Technology |
著者所属(英) |
|
|
|
en |
|
|
Presently with Tokyo University of Technology |
著者所属(英) |
|
|
|
en |
|
|
Presently with Tokyo University of Technology |
著者所属(英) |
|
|
|
en |
|
|
Presently with Tokyo University of Technology |
著者所属(英) |
|
|
|
en |
|
|
Presently with Tokyo University of Technology |
著者所属(英) |
|
|
|
en |
|
|
Presently with Tokyo University of Technology |
著者名 |
内野, 彰紀
川島, 速人
佐藤, 公哉
遠藤, 空
黒澤, 綾雅
遠藤, 明恵
宇田, 隆哉
|
著者名(英) |
Akinori, Uchino
Hayato, Kawashima
Kimiya, Sato
Sora, Endo
Ryoga, Kurosawa
Akae, Endo
Ryuya, Uda
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
近年,マルウェアの巧妙化に伴い,侵入前に検知を行うことが難しくなっている.マルウェアが侵入してしまった場合には迅速に対応を行う必要があるが,短時間にマルウェアの機能を推定できれば被害を最小限に抑えられる.ログからマルウェア機能の推定を行う既存研究では,API ログにあるすべての API 情報を利用していたが,本研究では API 情報をクラス分けし,最適な組み合わせで機械学習を行うことによって,短時間のログデータからでも高い精度の機能推定を行えるようにする.実験の結果,既存研究と比較して精度が最大約 10% 向上した.また,既存研究よりも短時間のログからも精度の高い結果を得ることができた. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
In recent years, it is difficult to detect the malware intrusion because malware has become more sophisticated. For the malware intrusion, it is necessary to take prompt action. On the other hand, if it is possible to presume the malware functions in a short period of time, the damage caused by the malware will be minimized. The malware function presumption methods in existing studies used all the API information contents in API logs. On the other hand, in this study, API information contents are classified into classes and trained with the optimal combination of the contents for the highly accurate function presumption from short time logs. As a result, the accuracy was improved by up to about 10 percent compared to existing studies. The results also showed that the accuracy of the results was higher than that of the existing studies, even from short time logs. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AA11235941 |
書誌情報 |
研究報告コンピュータセキュリティ(CSEC)
巻 2024-CSEC-104,
号 22,
p. 1-7,
発行日 2024-03-11
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8655 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |