@techreport{oai:ipsj.ixsq.nii.ac.jp:00233080,
 author = {菅原, 裕晴 and 細野, 海人 and 森住, 哲也 and 木下, 宏揚 and Yusei, Sugawara and Kaito, Hosono and Tetsuya, Morizumi and Hirotsugu, Kinoshita},
 issue = {60},
 month = {Mar},
 note = {テクノロジーが発展するにつれて,画像の無断複製などによる著作権侵害が深刻な問題となっている.この問題を解決する知覚ハッシュには,CNN の重み・バイアスを用いる手法と CNN ノードのレスポンスを活用する手法がある.本研究では,ImageNet で訓練された VGG-16 のレスポンス (中間層や全結合層・出力層) を活用し,知覚ハッシュの生成を行う.本研究では,レスポンスの選択が精度や計算コスト (ファイルサイズ,ファイルの生成時間) に与える影響を明らかにし,そのバランスが最も良いとされるレスポンスを特定する., As technology advances, unauthorized duplication of images has become a serious issue related to copyright infringement. To tackle this challenge, two approaches are considered: one that utilizes the weights and biases of CNN, and another that employing the responses of CNN nodes. In this study, we generate perceptual hashes using responses from various layers of VGG-16, a CNN trained on ImageNet, including intermediate, fully connected, and output layers. In this study, we clarify the effects of selecting different responses on the accuracy and computational costs, which include file size and generation time, and we pinpoint the responses that yield the most favorable balance between these aspects.},
 title = {CNNノードのレスポンスを活用した知覚ハッシュ},
 year = {2024}
}