ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. 数理モデル化と応用(TOM)
  3. Vol.17
  4. No.1

Bayesian Spectral Analysis with Binomial Distribution Noise

https://ipsj.ixsq.nii.ac.jp/records/232856
https://ipsj.ixsq.nii.ac.jp/records/232856
bf60d193-71d9-4da3-b037-9ce4ab4baa6c
名前 / ファイル ライセンス アクション
IPSJ-TOM1701007.pdf IPSJ-TOM1701007.pdf (11.1 MB)
 2026年2月28日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, MPS:会員:¥0, DLIB:会員:¥0
Item type Trans(1)
公開日 2024-02-28
タイトル
タイトル Bayesian Spectral Analysis with Binomial Distribution Noise
タイトル
言語 en
タイトル Bayesian Spectral Analysis with Binomial Distribution Noise
言語
言語 eng
キーワード
主題Scheme Other
主題 [オリジナル論文] binomial distribution, Bayesian inference, spectral deconvolution, X-ray emission spectroscopy, absorption spectra
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
University of Tokyo
著者所属
National Institute for Materials Science
著者所属
University of Tokyo
著者所属
Kumamoto University
著者所属
University of Tokyo
著者所属(英)
en
University of Tokyo
著者所属(英)
en
National Institute for Materials Science
著者所属(英)
en
University of Tokyo
著者所属(英)
en
Kumamoto University
著者所属(英)
en
University of Tokyo
著者名 Tomohiro, Nabika

× Tomohiro, Nabika

Tomohiro, Nabika

Search repository
Kenji, Nagata

× Kenji, Nagata

Kenji, Nagata

Search repository
Shun, Katakami

× Shun, Katakami

Shun, Katakami

Search repository
Masaichiro, Mizumaki

× Masaichiro, Mizumaki

Masaichiro, Mizumaki

Search repository
Masato, Okada

× Masato, Okada

Masato, Okada

Search repository
著者名(英) Tomohiro, Nabika

× Tomohiro, Nabika

en Tomohiro, Nabika

Search repository
Kenji, Nagata

× Kenji, Nagata

en Kenji, Nagata

Search repository
Shun, Katakami

× Shun, Katakami

en Shun, Katakami

Search repository
Masaichiro, Mizumaki

× Masaichiro, Mizumaki

en Masaichiro, Mizumaki

Search repository
Masato, Okada

× Masato, Okada

en Masato, Okada

Search repository
論文抄録
内容記述タイプ Other
内容記述 In some spectral measurements, such as absorption spectra, data are obtained as observation rates. When analyzing such data, Gaussian noise is typically assumed. However, the process of data generation can be modeled with binomial distribution noise. Conversely, in Bayesian analysis for spectral measurements, selecting an appropriate noise model is important. Therefore, we developed Bayesian spectral deconvolution based on a binomial distribution and compared it with Bayesian spectral deconvolution based on a Gaussian distribution. Using artificial data, we show that different noise models change the posterior distribution of peak numbers and their parameters, thereby affecting the analysis results. Moreover, we found that Bayesian spectral deconvolution based on a binomial distribution can analyze data with flattened peak structures, which was previously impossible to analyze. Using real data from X-ray emission spectroscopy, we confirmed that binomial distribution noise is more appropriate than Gaussian noise by Bayesian inference.
論文抄録(英)
内容記述タイプ Other
内容記述 In some spectral measurements, such as absorption spectra, data are obtained as observation rates. When analyzing such data, Gaussian noise is typically assumed. However, the process of data generation can be modeled with binomial distribution noise. Conversely, in Bayesian analysis for spectral measurements, selecting an appropriate noise model is important. Therefore, we developed Bayesian spectral deconvolution based on a binomial distribution and compared it with Bayesian spectral deconvolution based on a Gaussian distribution. Using artificial data, we show that different noise models change the posterior distribution of peak numbers and their parameters, thereby affecting the analysis results. Moreover, we found that Bayesian spectral deconvolution based on a binomial distribution can analyze data with flattened peak structures, which was previously impossible to analyze. Using real data from X-ray emission spectroscopy, we confirmed that binomial distribution noise is more appropriate than Gaussian noise by Bayesian inference.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11464803
書誌情報 情報処理学会論文誌数理モデル化と応用(TOM)

巻 17, 号 1, p. 47-56, 発行日 2024-02-28
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7780
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 10:17:53.819267
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3