{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00232713","sets":["1164:4619:11539:11552"]},"path":["11552"],"owner":"44499","recid":"232713","title":["学習済み深層学習モデルを用いた異常検出のための特徴量重ね合わせの最適化"],"pubdate":{"attribute_name":"公開日","attribute_value":"2024-02-25"},"_buckets":{"deposit":"897058fe-e750-4e1c-87ff-d91c9847f35d"},"_deposit":{"id":"232713","pid":{"type":"depid","value":"232713","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"学習済み深層学習モデルを用いた異常検出のための特徴量重ね合わせの最適化","author_link":["630627","630630","630628","630633","630634","630626","630625","630632","630629","630631"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"学習済み深層学習モデルを用いた異常検出のための特徴量重ね合わせの最適化"}]},"item_type_id":"4","publish_date":"2024-02-25","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"九州工業大学"},{"subitem_text_value":"九州工業大学"},{"subitem_text_value":"九州工業大学"},{"subitem_text_value":"i-PRO株式会社"},{"subitem_text_value":"i-PRO株式会社"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Kyushu Institute of Technology","subitem_text_language":"en"},{"subitem_text_value":"Kyushu Institute of Technology","subitem_text_language":"en"},{"subitem_text_value":"Kyushu Institute of Technology","subitem_text_language":"en"},{"subitem_text_value":"i-PRO Co., Ltd.","subitem_text_language":"en"},{"subitem_text_value":"i-PRO Co., Ltd.","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/232713/files/IPSJ-CVIM24237022.pdf","label":"IPSJ-CVIM24237022.pdf"},"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-CVIM24237022.pdf","filesize":[{"value":"3.7 MB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"0","billingrole":"20"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_login","version_id":"e9e0e4ba-cef1-4dc0-9e15-0745a296696e","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2024 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG."}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"平尾, 寿希"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"川原, 僚"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"岡部, 孝弘"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"大智, 輝"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"佐々木, 雄飛"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Toshiki, Hirao","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Ryo, Kawahara","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Takahiro, Okabe","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Akira, Ochi","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Yuuhi, Sasaki","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA11131797","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2188-8701","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"画像に基づく異常検出は,外観検査の自動化に有用である.特に,学習済み深層学習モデルを用いて抽出した特徴量に基づく異常検出は,少数の正例のみを用いた短時間の学習で比較的高い検出精度を実現できることから注目されている.本研究では,学習済み深層学習モデルを用いた異常検出の精度が,入力画像の良し悪しに依存することに着目して,撮影条件の異なる複数の画像を入力とする手法を提案する.提案手法では,正例のみ,もしくは,正例とごく少数の負例を用いた学習により,複数の画像から抽出した特徴量を最適に重ね合わせて異常検出を行う.学習済み深層学習モデルを用いた異常検出の代表的な手法に特徴量重ね合わせの最適化を組み込み,公開データセッ トを用いた実験を行うことで,提案手法の有効性を示す.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"6","bibliographic_titles":[{"bibliographic_title":"研究報告コンピュータビジョンとイメージメディア(CVIM)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2024-02-25","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"22","bibliographicVolumeNumber":"2024-CVIM-237"}]},"relation_version_is_last":true,"weko_creator_id":"44499"},"id":232713,"updated":"2025-01-19T10:20:43.335436+00:00","links":{},"created":"2025-01-19T01:33:44.211130+00:00"}