ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. ユビキタスコンピューティングシステム(UBI)
  3. 2024
  4. 2024-UBI-081

Preliminary investigation on motif-guided multilevel knowledge transfer for logistic work activity recognition

https://ipsj.ixsq.nii.ac.jp/records/232615
https://ipsj.ixsq.nii.ac.jp/records/232615
1194913a-6731-49c6-93d2-7940e89d1e5e
名前 / ファイル ライセンス アクション
IPSJ-UBI24081011.pdf IPSJ-UBI24081011.pdf (2.8 MB)
 2026年2月22日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, UBI:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-02-22
タイトル
タイトル Preliminary investigation on motif-guided multilevel knowledge transfer for logistic work activity recognition
タイトル
言語 en
タイトル Preliminary investigation on motif-guided multilevel knowledge transfer for logistic work activity recognition
言語
言語 eng
キーワード
主題Scheme Other
主題 AI for Supporting Workers
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属(英)
en
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属(英)
en
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属(英)
en
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者名 Jaime, Morales

× Jaime, Morales

Jaime, Morales

Search repository
Qingxin, Xia

× Qingxin, Xia

Qingxin, Xia

Search repository
Naoya, Yoshimura

× Naoya, Yoshimura

Naoya, Yoshimura

Search repository
Takuya, Maekawa

× Takuya, Maekawa

Takuya, Maekawa

Search repository
Hirotomo, Oshima

× Hirotomo, Oshima

Hirotomo, Oshima

Search repository
Masamitsu, Fukuda

× Masamitsu, Fukuda

Masamitsu, Fukuda

Search repository
Yasuo, Namioka

× Yasuo, Namioka

Yasuo, Namioka

Search repository
著者名(英) Jaime, Morales

× Jaime, Morales

en Jaime, Morales

Search repository
Qingxin, Xia

× Qingxin, Xia

en Qingxin, Xia

Search repository
Naoya, Yoshimura

× Naoya, Yoshimura

en Naoya, Yoshimura

Search repository
Takuya, Maekawa

× Takuya, Maekawa

en Takuya, Maekawa

Search repository
Hirotomo, Oshima

× Hirotomo, Oshima

en Hirotomo, Oshima

Search repository
Masamitsu, Fukuda

× Masamitsu, Fukuda

en Masamitsu, Fukuda

Search repository
Yasuo, Namioka

× Yasuo, Namioka

en Yasuo, Namioka

Search repository
論文抄録
内容記述タイプ Other
内容記述 When using human activity recognition (HAR) methods in the industrial domain two main problems exist, complex sensor data and lack of labeled data. The complexity of sensor data has been previously addressed by employing motif-guided attention-based models. However, these models provide user-specific solutions that cannot be applied to the general population. This study presents a knowledge transfer method that allows the application of such reliable methods on a previously unknown target user with minimal labeled data. To accomplish this we propose a new technique for selecting appropriate training data segments from an existing pool of known users by identifying multiple levels of similarity between the source and target users, such as work trend similarity, operation-specific motions, user unique key actions, etc. We call this method motif-guided multilevel knowledge transfer. We evaluate the ability of our framework using 3 separate logistic datasets (one real-life, two simulated).
論文抄録(英)
内容記述タイプ Other
内容記述 When using human activity recognition (HAR) methods in the industrial domain two main problems exist, complex sensor data and lack of labeled data. The complexity of sensor data has been previously addressed by employing motif-guided attention-based models. However, these models provide user-specific solutions that cannot be applied to the general population. This study presents a knowledge transfer method that allows the application of such reliable methods on a previously unknown target user with minimal labeled data. To accomplish this we propose a new technique for selecting appropriate training data segments from an existing pool of known users by identifying multiple levels of similarity between the source and target users, such as work trend similarity, operation-specific motions, user unique key actions, etc. We call this method motif-guided multilevel knowledge transfer. We evaluate the ability of our framework using 3 separate logistic datasets (one real-life, two simulated).
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11838947
書誌情報 研究報告ユビキタスコンピューティングシステム(UBI)

巻 2024-UBI-81, 号 11, p. 1-9, 発行日 2024-02-22
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8698
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 10:23:24.095591
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3