ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.65
  3. No.2

Sample-size and Repetition Effects on the Prediction Accuracy of Time and Error-rate Models in Steering Tasks

https://ipsj.ixsq.nii.ac.jp/records/232443
https://ipsj.ixsq.nii.ac.jp/records/232443
2c2608ee-3e64-417c-b412-28b8746d15fb
名前 / ファイル ライセンス アクション
IPSJ-JNL6502057.pdf IPSJ-JNL6502057.pdf (2.9 MB)
 2026年2月15日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, 論文誌:会員:¥0, DLIB:会員:¥0
Item type Journal(1)
公開日 2024-02-15
タイトル
タイトル Sample-size and Repetition Effects on the Prediction Accuracy of Time and Error-rate Models in Steering Tasks
タイトル
言語 en
タイトル Sample-size and Repetition Effects on the Prediction Accuracy of Time and Error-rate Models in Steering Tasks
言語
言語 eng
キーワード
主題Scheme Other
主題 [一般論文] Human performance modeling, steering law, sample size
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
LY Corporation
著者所属(英)
en
LY Corporation
著者名 Shota, Yamanaka

× Shota, Yamanaka

Shota, Yamanaka

Search repository
著者名(英) Shota, Yamanaka

× Shota, Yamanaka

en Shota, Yamanaka

Search repository
論文抄録
内容記述タイプ Other
内容記述 A previous study on target pointing has shown that the accuracy of performance models improves as the number of participants and clicks increases, but the task was limited to artificially simplified one-dimensional movements. Practical user interfaces often require more complex operations, and thus we examine the effects of the number of participants and task repetitions on the fit of existing models for path-steering tasks. Empirical results showed that the model for predicting movement times consistently fitted the data with high accuracy, even when the numbers of participants and repetitions were small. However, the model for predicting error rates was less accurate in terms of R2, MAE, and RMSE. Therefore, the benefit of recruiting numerous participants is relatively greater for the error-rate prediction model, which supports the previous study on target-pointing tasks.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.32(2024) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.32.247
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 A previous study on target pointing has shown that the accuracy of performance models improves as the number of participants and clicks increases, but the task was limited to artificially simplified one-dimensional movements. Practical user interfaces often require more complex operations, and thus we examine the effects of the number of participants and task repetitions on the fit of existing models for path-steering tasks. Empirical results showed that the model for predicting movement times consistently fitted the data with high accuracy, even when the numbers of participants and repetitions were small. However, the model for predicting error rates was less accurate in terms of R2, MAE, and RMSE. Therefore, the benefit of recruiting numerous participants is relatively greater for the error-rate prediction model, which supports the previous study on target-pointing tasks.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.32(2024) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.32.247
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 65, 号 2, 発行日 2024-02-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
公開者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 10:26:44.450347
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3