ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.64
  3. No.12

HAWK-Net: Hierarchical Attention Weighted Top-K Network for High-resolution Image Classification

https://ipsj.ixsq.nii.ac.jp/records/231556
https://ipsj.ixsq.nii.ac.jp/records/231556
07b93128-76df-403a-8bae-f0fbffb3559a
名前 / ファイル ライセンス アクション
IPSJ-JNL6412014.pdf IPSJ-JNL6412014.pdf (5.0 MB)
 2025年12月15日からダウンロード可能です。
Copyright (c) 2023 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, 論文誌:会員:¥0, DLIB:会員:¥0
Item type Journal(1)
公開日 2023-12-15
タイトル
タイトル HAWK-Net: Hierarchical Attention Weighted Top-K Network for High-resolution Image Classification
タイトル
言語 en
タイトル HAWK-Net: Hierarchical Attention Weighted Top-K Network for High-resolution Image Classification
言語
言語 eng
キーワード
主題Scheme Other
主題 [一般論文] megapixel, deep learning, attention mechanism, gated mechanism, differentiable top-K, hierarchical networks
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
The University of Tokyo
著者所属
The University of Tokyo
著者所属
The University of Tokyo
著者所属(英)
en
The University of Tokyo
著者所属(英)
en
The University of Tokyo
著者所属(英)
en
The University of Tokyo
著者名 Hitoshi, Nakanishi

× Hitoshi, Nakanishi

Hitoshi, Nakanishi

Search repository
Masahiro, Suzuki

× Masahiro, Suzuki

Masahiro, Suzuki

Search repository
Yutaka, Matsuo

× Yutaka, Matsuo

Yutaka, Matsuo

Search repository
著者名(英) Hitoshi, Nakanishi

× Hitoshi, Nakanishi

en Hitoshi, Nakanishi

Search repository
Masahiro, Suzuki

× Masahiro, Suzuki

en Masahiro, Suzuki

Search repository
Yutaka, Matsuo

× Yutaka, Matsuo

en Yutaka, Matsuo

Search repository
論文抄録
内容記述タイプ Other
内容記述 To handle high-resolution images on finite computational resources, many researches have been conducted on hierarchical networks to load features in only the most meaningful local regions. However, it is difficult to determine the correct number and location of patch regions at the appropriate scale in these methods. Then, incorrectly selected regions at different scales interfere with feature extraction and information integration. To solve this issue, we propose a hierarchical attention weighted network (HAWK-Net), which consists of a backbone network with differentiable Top-K selection and spatially gated blocks. The Top-K selected patches are identified from multiple image scaled features and extracted from an original high-resolution image. Then, patch features are aggregated via a novel gate mechanism under the uncertainty of the predicted information. Not only can multi-scale information uncertainty be modeled, but it also controls the gradient to the feature network coming from patch images with low confidence in the region proposal network in feedback during training. Our model is a simple yet efficient network structure that can learn from multiple scales and patches and is capable of end-to-end training. Based on benchmarks of multiple high-resolution images, our model achieves even higher performance with lower memory usage and reduced computation time.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.31(2023) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.31.851
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 To handle high-resolution images on finite computational resources, many researches have been conducted on hierarchical networks to load features in only the most meaningful local regions. However, it is difficult to determine the correct number and location of patch regions at the appropriate scale in these methods. Then, incorrectly selected regions at different scales interfere with feature extraction and information integration. To solve this issue, we propose a hierarchical attention weighted network (HAWK-Net), which consists of a backbone network with differentiable Top-K selection and spatially gated blocks. The Top-K selected patches are identified from multiple image scaled features and extracted from an original high-resolution image. Then, patch features are aggregated via a novel gate mechanism under the uncertainty of the predicted information. Not only can multi-scale information uncertainty be modeled, but it also controls the gradient to the feature network coming from patch images with low confidence in the region proposal network in feedback during training. Our model is a simple yet efficient network structure that can learn from multiple scales and patches and is capable of end-to-end training. Based on benchmarks of multiple high-resolution images, our model achieves even higher performance with lower memory usage and reduced computation time.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.31(2023) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.31.851
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 64, 号 12, 発行日 2023-12-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
公開者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 10:43:36.230473
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3