ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.64
  3. No.12

The Attacker Might Also Do Next: ATT&CK Behavior Forecasting by Attacker-based Collaborative Filtering and Graph Databases

https://ipsj.ixsq.nii.ac.jp/records/231548
https://ipsj.ixsq.nii.ac.jp/records/231548
1102c57c-56a2-46a6-9095-e15de6f73985
名前 / ファイル ライセンス アクション
IPSJ-JNL6412006.pdf IPSJ-JNL6412006.pdf (1.4 MB)
 2025年12月15日からダウンロード可能です。
Copyright (c) 2023 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, 論文誌:会員:¥0, DLIB:会員:¥0
Item type Journal(1)
公開日 2023-12-15
タイトル
タイトル The Attacker Might Also Do Next: ATT&CK Behavior Forecasting by Attacker-based Collaborative Filtering and Graph Databases
タイトル
言語 en
タイトル The Attacker Might Also Do Next: ATT&CK Behavior Forecasting by Attacker-based Collaborative Filtering and Graph Databases
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:次世代デジタルプラットフォームにおける情報流通を支えるセキュリティとトラスト] MITRE ATT&CK, Collaborative Filtering, Attack Prediction, Graph Database
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Toyo University
著者所属
Toyo University
著者所属
Toyo University/The University of Tokyo
著者所属
Toyo University
著者所属(英)
en
Toyo University
著者所属(英)
en
Toyo University
著者所属(英)
en
Toyo University / The University of Tokyo
著者所属(英)
en
Toyo University
著者名 Masaki, Kuwano

× Masaki, Kuwano

Masaki, Kuwano

Search repository
Momoka, Okuma

× Momoka, Okuma

Momoka, Okuma

Search repository
Satoshi, Okada

× Satoshi, Okada

Satoshi, Okada

Search repository
Takuho, Mitsunaga

× Takuho, Mitsunaga

Takuho, Mitsunaga

Search repository
著者名(英) Masaki, Kuwano

× Masaki, Kuwano

en Masaki, Kuwano

Search repository
Momoka, Okuma

× Momoka, Okuma

en Momoka, Okuma

Search repository
Satoshi, Okada

× Satoshi, Okada

en Satoshi, Okada

Search repository
Takuho, Mitsunaga

× Takuho, Mitsunaga

en Takuho, Mitsunaga

Search repository
論文抄録
内容記述タイプ Other
内容記述 Cyber attacks are causing tremendous damage around the world. To protect against attacks, many organizations have established or outsourced Security Operation Centers (SOCs) to check a large number of logs daily. Since there is no perfect countermeasure against cyber attacks, it is necessary to detect signs of intrusion quickly to mitigate damage caused by them. However, it is challenging to analyze a lot of logs obtained from PCs and servers inside an organization. Therefore, there is a need for a method of efficiently analyzing logs. In this paper, we propose a recommendation system using the ATT&CK technique, which predicts and visualizes attackers' behaviors using collaborative filtering so that security analysts can analyze logs efficiently. We evaluated the proposed method using real-world cyber-attack cases and found that it is able to make predictions with higher recall than our previously proposed method.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.31(2023) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.31.802
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Cyber attacks are causing tremendous damage around the world. To protect against attacks, many organizations have established or outsourced Security Operation Centers (SOCs) to check a large number of logs daily. Since there is no perfect countermeasure against cyber attacks, it is necessary to detect signs of intrusion quickly to mitigate damage caused by them. However, it is challenging to analyze a lot of logs obtained from PCs and servers inside an organization. Therefore, there is a need for a method of efficiently analyzing logs. In this paper, we propose a recommendation system using the ATT&CK technique, which predicts and visualizes attackers' behaviors using collaborative filtering so that security analysts can analyze logs efficiently. We evaluated the proposed method using real-world cyber-attack cases and found that it is able to make predictions with higher recall than our previously proposed method.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.31(2023) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.31.802
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 64, 号 12, 発行日 2023-12-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
公開者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 10:43:41.586352
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3