{"links":{},"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00231464","sets":["1164:2735:11166:11409"]},"path":["11409"],"owner":"44499","recid":"231464","title":["大規模データと差分進化によるサポートベクトルマシンのモデル選択"],"pubdate":{"attribute_name":"公開日","attribute_value":"2023-12-04"},"_buckets":{"deposit":"fe024f97-1736-4206-b5c5-5746ba0eb7b9"},"_deposit":{"id":"231464","pid":{"type":"depid","value":"231464","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"大規模データと差分進化によるサポートベクトルマシンのモデル選択","author_link":["624869"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"大規模データと差分進化によるサポートベクトルマシンのモデル選択"}]},"item_type_id":"4","publish_date":"2023-12-04","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"近畿大学情報学部"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/231464/files/IPSJ-MPS23146010.pdf","label":"IPSJ-MPS23146010.pdf"},"date":[{"dateType":"Available","dateValue":"2025-12-04"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-MPS23146010.pdf","filesize":[{"value":"896.7 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"17"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"db81eba9-cf35-4c6c-a6e6-a0aa7d189093","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2023 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"田川, 聖治"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN10505667","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2188-8833","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"差分進化を使用した SVM のモデル選択の新たな手法を提案する.既存の SVM のモデル選択では,正則化係数やカーネルのパラメータのみを最適化する.しかし,SVM の性能はハイパーパラメータのみならず,学習に用いる訓練データにも大きく依存する.そこで,提案手法では,大規模な教師データからの訓練データの選択も最適化の処理に加えて,その効果を機械学習のベンチマーク問題で検証する.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"2","bibliographic_titles":[{"bibliographic_title":"研究報告数理モデル化と問題解決(MPS)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2023-12-04","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"10","bibliographicVolumeNumber":"2023-MPS-146"}]},"relation_version_is_last":true,"weko_creator_id":"44499"},"created":"2025-01-19T01:31:47.074817+00:00","updated":"2025-01-19T10:45:13.765585+00:00","id":231464}