ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 自然言語処理(NL)
  3. 2023
  4. 2023-NL-258

Self-supervised learning model based emotion transfer and intensity control technology for expressive speech synthesis

https://ipsj.ixsq.nii.ac.jp/records/231274
https://ipsj.ixsq.nii.ac.jp/records/231274
02feec10-155e-451f-90d3-1caf1f56f375
名前 / ファイル ライセンス アクション
IPSJ-NL23258016.pdf IPSJ-NL23258016.pdf (1.3 MB)
Copyright (c) 2023 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
NL:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-11-25
タイトル
タイトル Self-supervised learning model based emotion transfer and intensity control technology for expressive speech synthesis
タイトル
言語 en
タイトル Self-supervised learning model based emotion transfer and intensity control technology for expressive speech synthesis
言語
言語 eng
キーワード
主題Scheme Other
主題 ポスター
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Engineering, The University of Tokyo
著者所属
Graduate School of Engineering, The University of Tokyo
著者所属
Graduate School of Engineering, The University of Tokyo
著者所属(英)
en
Graduate School of Engineering, The University of Tokyo
著者所属(英)
en
Graduate School of Engineering, The University of Tokyo
著者所属(英)
en
Graduate School of Engineering, The University of Tokyo
著者名 Wei, Li

× Wei, Li

Wei, Li

Search repository
Nobuaki, Minematsu

× Nobuaki, Minematsu

Nobuaki, Minematsu

Search repository
Daisuke, Saito

× Daisuke, Saito

Daisuke, Saito

Search repository
著者名(英) Wei, Li

× Wei, Li

en Wei, Li

Search repository
Nobuaki, Minematsu

× Nobuaki, Minematsu

en Nobuaki, Minematsu

Search repository
Daisuke, Saito

× Daisuke, Saito

en Daisuke, Saito

Search repository
論文抄録
内容記述タイプ Other
内容記述 Emotion transfer techniques, which transfersba the speaking style from the reference speech to the target speech, are widely used for speech synthesis. However, previous methods using emotion classifier to disentangle the emotion components fail to transfer the correct emotion to the target speech in some contexts. To solve this problem, we introduce self-supervised learning model to improve the capability of emotion feature extraction. In addition, we utilize the relative attributes method to obtain the intensity labels for our emotional speech dataset. Experimental results indicate that our method can improve the performance of emotional speech synthesis model.
論文抄録(英)
内容記述タイプ Other
内容記述 Emotion transfer techniques, which transfersba the speaking style from the reference speech to the target speech, are widely used for speech synthesis. However, previous methods using emotion classifier to disentangle the emotion components fail to transfer the correct emotion to the target speech in some contexts. To solve this problem, we introduce self-supervised learning model to improve the capability of emotion feature extraction. In addition, we utilize the relative attributes method to obtain the intensity labels for our emotional speech dataset. Experimental results indicate that our method can improve the performance of emotional speech synthesis model.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10115061
書誌情報 研究報告自然言語処理(NL)

巻 2023-NL-258, 号 16, p. 1-6, 発行日 2023-11-25
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8779
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 10:49:40.608105
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3