Item type |
SIG Technical Reports(1) |
公開日 |
2023-11-25 |
タイトル |
|
|
タイトル |
Enhancing Multi-Accent Automated Speech Recognition with Accent-Activated Adapters |
タイトル |
|
|
言語 |
en |
|
タイトル |
Enhancing Multi-Accent Automated Speech Recognition with Accent-Activated Adapters |
言語 |
|
|
言語 |
eng |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
ポスター |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University/Graduate School of Engineering, The University of Tokyo |
著者所属 |
|
|
|
Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University |
著者所属 |
|
|
|
Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University |
著者所属 |
|
|
|
Graduate School of Engineering, The University of Tokyo |
著者所属(英) |
|
|
|
en |
|
|
Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University / Graduate School of Engineering, The University of Tokyo |
著者所属(英) |
|
|
|
en |
|
|
Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University |
著者所属(英) |
|
|
|
en |
|
|
Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University |
著者所属(英) |
|
|
|
en |
|
|
Graduate School of Engineering, The University of Tokyo |
著者名 |
Yuqin, Lin
Longbiao, Wang
Jianwu, Dang
Nobuaki, Minematsu
|
著者名(英) |
Yuqin, Lin
Longbiao, Wang
Jianwu, Dang
Nobuaki, Minematsu
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
This paper proposes the Accent-Activated adapter (AccentAct) approach to address the challenge of speech variations in multi-accent scenarios. By incorporating parallel accent and contextual extractors within a pre-trained model, AccentAct improves ASR performance while reducing computational resources. Experimental results show that AccentAct outperforms traditional methods with a significant reduction in computational requirements, promoting inclusivity for individuals with diverse accents or dialects. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
This paper proposes the Accent-Activated adapter (AccentAct) approach to address the challenge of speech variations in multi-accent scenarios. By incorporating parallel accent and contextual extractors within a pre-trained model, AccentAct improves ASR performance while reducing computational resources. Experimental results show that AccentAct outperforms traditional methods with a significant reduction in computational requirements, promoting inclusivity for individuals with diverse accents or dialects. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN10115061 |
書誌情報 |
研究報告自然言語処理(NL)
巻 2023-NL-258,
号 13,
p. 1-6,
発行日 2023-11-25
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8779 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |