Item type |
SIG Technical Reports(1) |
公開日 |
2023-11-28 |
タイトル |
|
|
タイトル |
逐次学習可能なグラフ分散表現のFPGAアクセラレータ |
タイトル |
|
|
言語 |
en |
|
タイトル |
An FPGA-Based Accelerator for Graph Embedding using Sequential Training Algorithm |
言語 |
|
|
言語 |
jpn |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
AIとグラフ |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
慶應義塾大学大学院理工学研究科 |
著者所属 |
|
|
|
慶應義塾大学大学院理工学研究科 |
著者所属 |
|
|
|
慶應義塾大学大学院理工学研究科 |
著者所属(英) |
|
|
|
en |
|
|
Faculty of Science and Technology, Keio University |
著者所属(英) |
|
|
|
en |
|
|
Faculty of Science and Technology, Keio University |
著者所属(英) |
|
|
|
en |
|
|
Faculty of Science and Technology, Keio University |
著者名 |
須永, 一輝
杉浦, 圭祐
松谷, 宏紀
|
著者名(英) |
Kazuki, Sunaga
Keisuke, Sugiura
Hiroki, Matsutani
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
グラフ構造を隣接行列で表現した場合,統計的操作や機械学習手法の直接的な適用は難しく,One-hot 表現を用いた場合その次元はノード数に線形に依存する.これに対する手法としてグラフ構造を分散表現と称される低次元のベクトルで表現する手法が存在している.node2vec は分散表現を学習する手法の 1 つであるが,基本的に誤差逆伝播法を用いてバッチ学習を行うため,グラフ構造の時間的な変化に対応することができない.そのため逐次的に更新を行う場合,以前の学習結果が失われてしまい精度が低下する.これに対処するため,本研究ではオンライン学習アルゴリズムである OS-ELM を node2vec の学習モデルに適用し,逐次学習に対応させる.また,組み込み IoT 機器上での動作を見据えて,FPGA (Field-Programmable Gate Array) による高速化を提案する.FPGA 実装により,ARM Cortex-A53 CPUと比較して,最大 205.254 倍の高速化を達成した.また逐次学習タスクにおける精度評価では,既存の node2vec の学習モデルが精度低下を引き起こしたのに対し,提案モデルでは学習データの増大に伴うと思われる精度向上が見られた. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN10096105 |
書誌情報 |
研究報告システム・アーキテクチャ(ARC)
巻 2023-ARC-255,
号 25,
p. 1-6,
発行日 2023-11-28
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8574 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |