WEKO3
アイテム
強化学習の価値関数近似器としてSDNNを用いた格闘ゲームAI
https://ipsj.ixsq.nii.ac.jp/records/229875
https://ipsj.ixsq.nii.ac.jp/records/2298759acbab1e-be96-4ef1-965d-45e4aac45065
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2023 by the Information Processing Society of Japan
|
Item type | National Convention(1) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2023-02-16 | |||||||||||||
タイトル | ||||||||||||||
タイトル | 強化学習の価値関数近似器としてSDNNを用いた格闘ゲームAI | |||||||||||||
言語 | ||||||||||||||
言語 | jpn | |||||||||||||
キーワード | ||||||||||||||
主題Scheme | Other | |||||||||||||
主題 | 人工知能と認知科学 | |||||||||||||
資源タイプ | ||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_5794 | |||||||||||||
資源タイプ | conference paper | |||||||||||||
著者所属 | ||||||||||||||
帝京大 | ||||||||||||||
著者所属 | ||||||||||||||
帝京大 | ||||||||||||||
著者所属 | ||||||||||||||
帝京大 | ||||||||||||||
著者所属 | ||||||||||||||
帝京大 | ||||||||||||||
著者名 |
小川, 拓実
× 小川, 拓実
× 阿久津, 光範
× 金, 致中
× 山根, 健
|
|||||||||||||
論文抄録 | ||||||||||||||
内容記述タイプ | Other | |||||||||||||
内容記述 | 格闘ゲームにおいて自律的な敵キャラクタは重要な要素であり,設計方法が課題となる.ルールベースの設計法では強さに限界があり,強化学習を用いる方法では学習効率が悪い.強化学習に関して,新保らは価値関数近似器として選択的不感化ニューラルネット(SDNN)を用いることでAcrobotタスクにおいて効率的に学習できることを示した.しかし,格闘ゲームのような多くの行動を扱うタスクへの適用例はない.そこで,本研究では,多くの行動を分散的な表現を用いて扱えるように新保らの方法を拡張し,強化学習を用いた格闘ゲームAIの設計方法を提案する.また,サンプルAIと対戦させて,提案手法の性能や学習効率,複数の対戦相手への適応性を評価する. | |||||||||||||
書誌レコードID | ||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||
収録物識別子 | AN00349328 | |||||||||||||
書誌情報 |
第85回全国大会講演論文集 巻 2023, 号 1, p. 149-150, 発行日 2023-02-16 |
|||||||||||||
出版者 | ||||||||||||||
言語 | ja | |||||||||||||
出版者 | 情報処理学会 |