ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. ヒューマンコンピュータインタラクション(HCI)
  3. 2023
  4. 2023-HCI-205

Estimation of Contraction Force of Forearm Muscle Using Stretch-Sensor Glove

https://ipsj.ixsq.nii.ac.jp/records/229368
https://ipsj.ixsq.nii.ac.jp/records/229368
083f72f2-e25d-41ba-a23d-e79f3ddfa2ac
名前 / ファイル ライセンス アクション
IPSJ-HCI23205002.pdf IPSJ-HCI23205002.pdf (1.7 MB)
 2025年11月14日からダウンロード可能です。
Copyright (c) 2023 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, HCI:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-11-14
タイトル
タイトル Estimation of Contraction Force of Forearm Muscle Using Stretch-Sensor Glove
タイトル
言語 en
タイトル Estimation of Contraction Force of Forearm Muscle Using Stretch-Sensor Glove
言語
言語 eng
キーワード
主題Scheme Other
主題 ウェアラブル・入力
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Kobe University
著者所属
Kobe University
著者所属
Kobe University
著者所属
Kobe University
著者所属(英)
en
Kobe University
著者所属(英)
en
Kobe University
著者所属(英)
en
Kobe University
著者所属(英)
en
Kobe University
著者名 Adhe, Rahmatullah Sugiharto Suwito P

× Adhe, Rahmatullah Sugiharto Suwito P

Adhe, Rahmatullah Sugiharto Suwito P

Search repository
Ayumi, Ohnishi

× Ayumi, Ohnishi

Ayumi, Ohnishi

Search repository
Tsutomu, Terada

× Tsutomu, Terada

Tsutomu, Terada

Search repository
Masahiko, Tsukaoto

× Masahiko, Tsukaoto

Masahiko, Tsukaoto

Search repository
著者名(英) Adhe, Rahmatullah Sugiharto Suwito P

× Adhe, Rahmatullah Sugiharto Suwito P

en Adhe, Rahmatullah Sugiharto Suwito P

Search repository
Ayumi, Ohnishi

× Ayumi, Ohnishi

en Ayumi, Ohnishi

Search repository
Tsutomu, Terada

× Tsutomu, Terada

en Tsutomu, Terada

Search repository
Masahiko, Tsukaoto

× Masahiko, Tsukaoto

en Masahiko, Tsukaoto

Search repository
論文抄録
内容記述タイプ Other
内容記述 Estimating a muscle contraction force has become an important method as it provides muscle conditions. Most studies focused on Electromyography (EMG) which requires a self-calibration procedure and its poor noise resistance. Considering the muscle-correlated modality, several studies introduced an excellent correlation of stretch sensors with EMG, thereby eliminating a complicated installation procedure. Therefore, this study proposed a method to estimate the forearm muscle contraction force using the stretch-sensor-based glove. The EMG signals of the forearm muscles and the stretch sensors' resistance values attached to each finger were recorded and trained by support vector regressor (SVR), random forest regressor (RFR), and multi-layer perceptron regressor (MLPR). The root-mean-square value of the EMG linear envelope was extracted as a muscle contraction force parameter and estimated from the stretch sensor values. The estimation performance was confirmed in the condition of grasping six cylinders varying in diameter sizes with natural and maximum grasping force. The result confirmed that the RFR model has the best performance on estimating the contraction force of forearm muscle.
論文抄録(英)
内容記述タイプ Other
内容記述 Estimating a muscle contraction force has become an important method as it provides muscle conditions. Most studies focused on Electromyography (EMG) which requires a self-calibration procedure and its poor noise resistance. Considering the muscle-correlated modality, several studies introduced an excellent correlation of stretch sensors with EMG, thereby eliminating a complicated installation procedure. Therefore, this study proposed a method to estimate the forearm muscle contraction force using the stretch-sensor-based glove. The EMG signals of the forearm muscles and the stretch sensors' resistance values attached to each finger were recorded and trained by support vector regressor (SVR), random forest regressor (RFR), and multi-layer perceptron regressor (MLPR). The root-mean-square value of the EMG linear envelope was extracted as a muscle contraction force parameter and estimated from the stretch sensor values. The estimation performance was confirmed in the condition of grasping six cylinders varying in diameter sizes with natural and maximum grasping force. The result confirmed that the RFR model has the best performance on estimating the contraction force of forearm muscle.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA1221543X
書誌情報 研究報告ヒューマンコンピュータインタラクション(HCI)

巻 2023-HCI-205, 号 2, p. 1-8, 発行日 2023-11-14
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8760
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 11:34:07.081161
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3