ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. コンピュータビジョンとイメージメディア(CVIM)
  3. 2023
  4. 2023-CVIM-235

重症度クラスを条件とした拡散モデルによる医用画像生成

https://ipsj.ixsq.nii.ac.jp/records/229239
https://ipsj.ixsq.nii.ac.jp/records/229239
1770de5d-d886-4e2a-bab7-28b055f8342c
名前 / ファイル ライセンス アクション
IPSJ-CVIM23235019.pdf IPSJ-CVIM23235019.pdf (1.8 MB)
Copyright (c) 2023 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
CVIM:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-11-09
タイトル
タイトル 重症度クラスを条件とした拡散モデルによる医用画像生成
言語
言語 jpn
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
九州大学
著者所属
九州大学
著者名 竹崎, 隼平

× 竹崎, 隼平

竹崎, 隼平

Search repository
内田, 誠一

× 内田, 誠一

内田, 誠一

Search repository
論文抄録
内容記述タイプ Other
内容記述 生成モデルを用いた医用画像生成は,生成画像の様々な応用が期待できるため非常に重要なタスクである.医用画像に付与されているクラスラベルには一般的なクラスと異なり,各クラス間で順序関係を満たす重症度クラスが付けられているものがある.重症度クラスが付与された医用画像の深層学習では,クラスラベルの他に順序関係を取り入れることで,クラス単体の学習では獲得できない特徴を捉えることが可能である.本研究では,生成モデルの一つである拡散モデルにおいて重症度クラスの順序関係を学習する重症度クラス拡散モデルを提案する.提案手法では,推定ノイズによって順序関係を捉える損失関数である順序損失での学習と,拡散モデルの時刻情報を使った損失関数の重み付けを行う.本手法は重症度クラスを持つ眼底画像及び内視鏡画像を使用した評価実験を通じて,従来の拡散モデルに比べて高い生成精度を達成することを確認した.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11131797
書誌情報 研究報告コンピュータビジョンとイメージメディア(CVIM)

巻 2023-CVIM-235, 号 19, p. 1-6, 発行日 2023-11-09
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8701
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 11:35:28.230381
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3