@techreport{oai:ipsj.ixsq.nii.ac.jp:00229215, author = {須山, 未侑羅 and 坂野, 鋭 and Suyama, Miura and Hitoshi, Sakano}, issue = {48}, month = {Nov}, note = {本研究では,高次元データを人間が理解可能な 2,3 次元に圧縮するための非線形次元圧縮法,Isomap の近傍パラメータの決定方法を提案する.画像などの高次元データは人間にとって知覚が難しく,線形変換では十分な分析が難しいため,非線形次元圧縮が用いられることが多い.しかし,これらの方法には任意性のあるパラメータが存在し,その決定が問題となる.そこで,位相的データ解析の一環として発展してきたパーシステントホモロジー技術を活用し,高次元空間の分布形状を数値的に捉え,次元圧縮のパラメータ決定のヒントを提供する手法を提案する., In this study, we propose a method to determine the neighborhood parameters of Isomap, a nonlinear dimensionality reduction technique, to compress high-dimensional data into 2 or 3 dimensions that humans can understand. High-dimensional data, such as images, are challenging for humans to perceive, and linear transformations often fall short in providing adequate analysis. As a result, nonlinear dimensionality reduction methods are frequently used. However, these methods come with arbitrary parameters, making their determination a challenge. To address this, we leverage persistent homology technology, which has evolved as part of topological data analysis. This technology numerically captures the distribution shape in high-dimensional spaces and offers insights into parameter determination for dimensionality reduction.}, title = {位相幾何学に基づくIsomapのパラメーター決定法}, year = {2023} }