ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. コンピュータグラフィックスとビジュアル情報学(CG)
  3. 2023
  4. 2023-CG-192

Generalizable Novel-view Synthesis of Full-body Human from Sparse Input

https://ipsj.ixsq.nii.ac.jp/records/229130
https://ipsj.ixsq.nii.ac.jp/records/229130
f0964fea-4c07-4762-9a5d-efa68a5bd1e5
名前 / ファイル ライセンス アクション
IPSJ-CG23192016.pdf IPSJ-CG23192016.pdf (5.2 MB)
 2025年11月9日からダウンロード可能です。
Copyright (c) 2023 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, CG:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-11-09
タイトル
タイトル Generalizable Novel-view Synthesis of Full-body Human from Sparse Input
タイトル
言語 en
タイトル Generalizable Novel-view Synthesis of Full-body Human from Sparse Input
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Presently with University of Tsukuba
著者所属
Presently with University of Tsukuba
著者所属
Presently with University of Tsukuba
著者所属(英)
en
Presently with University of Tsukuba
著者所属(英)
en
Presently with University of Tsukuba
著者所属(英)
en
Presently with University of Tsukuba
著者名 Zhaorong, Wang

× Zhaorong, Wang

Zhaorong, Wang

Search repository
Yoshihiro, Kanamori

× Yoshihiro, Kanamori

Yoshihiro, Kanamori

Search repository
Yuki, Endo

× Yuki, Endo

Yuki, Endo

Search repository
著者名(英) Zhaorong, Wang

× Zhaorong, Wang

en Zhaorong, Wang

Search repository
Yoshihiro, Kanamori

× Yoshihiro, Kanamori

en Yoshihiro, Kanamori

Search repository
Yuki, Endo

× Yuki, Endo

en Yuki, Endo

Search repository
論文抄録
内容記述タイプ Other
内容記述 Neural Radiance Fields (NeRF) have significantly advanced the field of novel view synthesis, and its application to full-body humans (or human NeRF) has been deemed as promising to enable telepresence. Generalizable human NeRF can avoid lengthy re-training for each human target but, if only sparse views are given, suffers from blurry outputs with artifacts due to insufficient visible samples. To better handle such a sparse view setting, we enhance the quality of appearance particularly in the regions completely occluded in any input views. We first condense sampling rays by omitting empty spaces via a parametric body fitting, leading improved appearance. We then specify the completely occluded regions and inpaint them to remove artifacts. Our method demonstrates improvements in quantitative evaluations compared to the baseline method. Qualitative results also exhibit higher fidelity, fewer artifacts, and a more natural clothing appearance.
論文抄録(英)
内容記述タイプ Other
内容記述 Neural Radiance Fields (NeRF) have significantly advanced the field of novel view synthesis, and its application to full-body humans (or human NeRF) has been deemed as promising to enable telepresence. Generalizable human NeRF can avoid lengthy re-training for each human target but, if only sparse views are given, suffers from blurry outputs with artifacts due to insufficient visible samples. To better handle such a sparse view setting, we enhance the quality of appearance particularly in the regions completely occluded in any input views. We first condense sampling rays by omitting empty spaces via a parametric body fitting, leading improved appearance. We then specify the completely occluded regions and inpaint them to remove artifacts. Our method demonstrates improvements in quantitative evaluations compared to the baseline method. Qualitative results also exhibit higher fidelity, fewer artifacts, and a more natural clothing appearance.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10100541
書誌情報 研究報告コンピュータグラフィックスとビジュアル情報学(CG)

巻 2023-CG-192, 号 16, p. 1-6, 発行日 2023-11-09
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8949
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 11:37:34.537445
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3