ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. アルゴリズム(AL)
  3. 2023
  4. 2023-AL-195

The Last Success Problem with a Single Sample

https://ipsj.ixsq.nii.ac.jp/records/228925
https://ipsj.ixsq.nii.ac.jp/records/228925
e68d141f-6e75-4a72-8a75-baf966dd3820
名前 / ファイル ライセンス アクション
IPSJ-AL23195005.pdf IPSJ-AL23195005.pdf (891.2 kB)
 2025年11月9日からダウンロード可能です。
Copyright (c) 2023 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, AL:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-11-09
タイトル
タイトル The Last Success Problem with a Single Sample
タイトル
言語 en
タイトル The Last Success Problem with a Single Sample
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
The University of Tokyo
著者所属
The University of Tokyo
著者所属(英)
en
The University of Tokyo
著者所属(英)
en
The University of Tokyo
著者名 Toru, Yoshinaga

× Toru, Yoshinaga

Toru, Yoshinaga

Search repository
Yasushi, Kawase

× Yasushi, Kawase

Yasushi, Kawase

Search repository
著者名(英) Toru, Yoshinaga

× Toru, Yoshinaga

en Toru, Yoshinaga

Search repository
Yasushi, Kawase

× Yasushi, Kawase

en Yasushi, Kawase

Search repository
論文抄録
内容記述タイプ Other
内容記述 The last success problem is an optimal stopping problem that aims to maximize the probability of stopping on the last success in a sequence of n Bernoulli trials. In this paper, we investigate a variant of the last success problem where we have single-sample access from each distribution instead of having comprehensive knowledge of the distributions. Nuti and Vondrak demonstrated that a winning probability exceeding 1/4 is unachievable for this setting, but it remains unknown whether a stopping policy that meets this bound exists. We reveal that Bruss's policy, when applied with the estimated success probabilities, cannot ensure a winning probability greater than (1-e-4)/4, irrespective of the estimations from the given samples. Nevertheless, we demonstrate that by setting the threshold the second-to-last success in samples and stopping on the first success observed after this threshold, a winning probability of 1/4 can be guaranteed.
論文抄録(英)
内容記述タイプ Other
内容記述 The last success problem is an optimal stopping problem that aims to maximize the probability of stopping on the last success in a sequence of n Bernoulli trials. In this paper, we investigate a variant of the last success problem where we have single-sample access from each distribution instead of having comprehensive knowledge of the distributions. Nuti and Vondrak demonstrated that a winning probability exceeding 1/4 is unachievable for this setting, but it remains unknown whether a stopping policy that meets this bound exists. We reveal that Bruss's policy, when applied with the estimated success probabilities, cannot ensure a winning probability greater than (1-e-4)/4, irrespective of the estimations from the given samples. Nevertheless, we demonstrate that by setting the threshold the second-to-last success in samples and stopping on the first success observed after this threshold, a winning probability of 1/4 can be guaranteed.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN1009593X
書誌情報 研究報告アルゴリズム(AL)

巻 2023-AL-195, 号 5, p. 1-1, 発行日 2023-11-09
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8566
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 11:40:10.526555
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3