ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. システムとLSIの設計技術(SLDM)
  3. 2023
  4. 2023-SLDM-204

WGAN-GP based AI accelerator fault detection and fault classification analysis

https://ipsj.ixsq.nii.ac.jp/records/228897
https://ipsj.ixsq.nii.ac.jp/records/228897
3e416166-6061-4fd2-abc8-90921950f44c
名前 / ファイル ライセンス アクション
IPSJ-SLDM23204030.pdf IPSJ-SLDM23204030.pdf (1.7 MB)
Copyright (c) 2023 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
SLDM:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-11-10
タイトル
タイトル WGAN-GP based AI accelerator fault detection and fault classification analysis
タイトル
言語 en
タイトル WGAN-GP based AI accelerator fault detection and fault classification analysis
言語
言語 eng
キーワード
主題Scheme Other
主題 高信頼LSI設計と評価
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Science and Engineering, Chiba University
著者所属
Graduate School of Science and Engineering, Chiba University
著者所属(英)
en
Graduate School of Science and Engineering, Chiba University
著者所属(英)
en
Graduate School of Science and Engineering, Chiba University
著者名 Shuming, Xu

× Shuming, Xu

Shuming, Xu

Search repository
Kazuteru, Namba

× Kazuteru, Namba

Kazuteru, Namba

Search repository
著者名(英) Shuming, Xu

× Shuming, Xu

en Shuming, Xu

Search repository
Kazuteru, Namba

× Kazuteru, Namba

en Kazuteru, Namba

Search repository
論文抄録
内容記述タイプ Other
内容記述 During the manufacturing phase of artificial intelligence (AI) chips, certain manufacturing faults bear profound significance due to their substantial impact on the precision of executed artificial intelligence wo rkloads. Detecting these critical functional faults necessitates the utilization of automatic test pattern generation (ATPG) tools, commonly employed to supply the requisite test patterns. However, such an approach entails notable costs and can potentially engender production losses. In this paper, we analyze the fault detection capacity predicated upon the criticality of chip functionality. Furthermore, we embark upon the task of categorizing faults within AI accelerators as either critical or benign. To this end, we present a machine learning architecture tailored to achieve fault detection in AI accelerators based on systolic arrays. Notably, we introduce an optimized generative adversarial neural network (GAN) WGAN-GP to ameliorate the misclassification challenges inherent to the designed detection architecture. Our results show that our method can identify faults with fixed accuracy and accurately classify them, thereby reducing production losses.
論文抄録(英)
内容記述タイプ Other
内容記述 During the manufacturing phase of artificial intelligence (AI) chips, certain manufacturing faults bear profound significance due to their substantial impact on the precision of executed artificial intelligence wo rkloads. Detecting these critical functional faults necessitates the utilization of automatic test pattern generation (ATPG) tools, commonly employed to supply the requisite test patterns. However, such an approach entails notable costs and can potentially engender production losses. In this paper, we analyze the fault detection capacity predicated upon the criticality of chip functionality. Furthermore, we embark upon the task of categorizing faults within AI accelerators as either critical or benign. To this end, we present a machine learning architecture tailored to achieve fault detection in AI accelerators based on systolic arrays. Notably, we introduce an optimized generative adversarial neural network (GAN) WGAN-GP to ameliorate the misclassification challenges inherent to the designed detection architecture. Our results show that our method can identify faults with fixed accuracy and accurately classify them, thereby reducing production losses.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11451459
書誌情報 研究報告システムとLSIの設計技術(SLDM)

巻 2023-SLDM-204, 号 30, p. 1-6, 発行日 2023-11-10
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8639
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 11:40:45.285397
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3