ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. システムとLSIの設計技術(SLDM)
  3. 2023
  4. 2023-SLDM-204

Preliminary Data-Pattern Analysis towards Energy-Efficient Adaptive In-Cache Computing for CNNs Acceleration\n

https://ipsj.ixsq.nii.ac.jp/records/228880
https://ipsj.ixsq.nii.ac.jp/records/228880
5ad74127-2c89-4e6f-9949-b349fbb44110
名前 / ファイル ライセンス アクション
IPSJ-SLDM23204013.pdf IPSJ-SLDM23204013.pdf (3.3 MB)
Copyright (c) 2023 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
SLDM:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-11-10
タイトル
タイトル Preliminary Data-Pattern Analysis towards Energy-Efficient Adaptive In-Cache Computing for CNNs Acceleration\n
タイトル
言語 en
タイトル Preliminary Data-Pattern Analysis towards Energy-Efficient Adaptive In-Cache Computing for CNNs Acceleration\n
言語
言語 eng
キーワード
主題Scheme Other
主題 アーキテクチャ・CiM
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Information Science and Electrical Engineering, Kyushu University
著者所属
Faculty of Information Science and Technology, Kyushu University
著者所属(英)
en
Graduate School of Information Science and Electrical Engineering, Kyushu University
著者所属(英)
en
Faculty of Information Science and Technology, Kyushu University
著者名 Zhengpan, Fei

× Zhengpan, Fei

Zhengpan, Fei

Search repository
Koji, Inoue

× Koji, Inoue

Koji, Inoue

Search repository
著者名(英) Zhengpan, Fei

× Zhengpan, Fei

en Zhengpan, Fei

Search repository
Koji, Inoue

× Koji, Inoue

en Koji, Inoue

Search repository
論文抄録
内容記述タイプ Other
内容記述 In Look-Up Table (LUT) based computing, naively covering all possible results requires an exponential amount of hardware resources. While applying a decomposition technique can reduce the LUT size, it also involves considerable memory access overhead. We exploit the data pattern in Convolutional Neural Networks (CNNs) applications and propose a data-pattern- driven (DPD) optimization to drastically reduce the size of the LUT while keeping the computation efficiency. Our preliminary evaluation shows that the above scheme maintains 96.84%, 88.67%, and 76.61% of LUT coverage when reducing the LUT to 1/32, 1/64, and 1/128 of the original size, respectively.
論文抄録(英)
内容記述タイプ Other
内容記述 In Look-Up Table (LUT) based computing, naively covering all possible results requires an exponential amount of hardware resources. While applying a decomposition technique can reduce the LUT size, it also involves considerable memory access overhead. We exploit the data pattern in Convolutional Neural Networks (CNNs) applications and propose a data-pattern- driven (DPD) optimization to drastically reduce the size of the LUT while keeping the computation efficiency. Our preliminary evaluation shows that the above scheme maintains 96.84%, 88.67%, and 76.61% of LUT coverage when reducing the LUT to 1/32, 1/64, and 1/128 of the original size, respectively.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11451459
書誌情報 研究報告システムとLSIの設計技術(SLDM)

巻 2023-SLDM-204, 号 13, p. 1-6, 発行日 2023-11-10
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8639
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 11:41:05.406654
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3